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The output feedback control problem is addressed for a class of nonlinear mul-
tivariable high-index differential-algebraic-equation systems in semiexplicit form.
Initially, an algorithmic procedure is developed and used to derive an equivalent
State-space realization of the constrained system. An output feedback synthesis
problem is then formulated on the basis of the derived state-space realization and
solved through the combination of state feedback and appropriate state observers.
The developed methodology is applied to a two-phase reactor, and its performance
and robustness characteristics are evaluated through simulations.

Introduction

Chemical processes are inherently nonlinear and multivar-
iable, and are typically modeled by coupled differential and
algebraic equations (DAEs). The differential equations arise
from dynamic conservation equations, while the algebraic
equations commonly arise from thermodynamic equilibrium
relations, empirical correlations, pseudo-steady-state assump-
tions, closure conditions, and so on. For many chemical proc-
esses, the algebraic equations are implicit and singular in nature,
inhibiting a direct reduction of the process model to one con-
sisting of pure differential equations.

Despite the above inherent complexities in the structure of
chemical processes, traditional process control methods are
based on linear ordinary differential equation (ODE) models,
derived through approximate linearization of nonlinear ODE
models. Application of such methods to processes with strong
nonlinearities and algebraic constraints clearly limits the con-
troller performance and the achievable control quality. These
considerations indicate a need to develop control methodol-
ogies for nonlinear DAE systems.

Research on control of nonlinear ODE systems has advanced
significantly to a stage where key system-theoretic concepts
are well understood (Isidori, 1989; Nijmeijer and van der
Schaft, 1990) and explicit controller synthesis results have been
derived (for example, Kravaris and Kantor, 1990a,b; Kravaris
and Arkun, 1991). On the other hand, research on DAE sys-
tems has focused mainly on their analysis and the development
of efficient numerical simulation techniques. A key concept
used to classify DAEs is that of the differential index (or simply
index) (Gear and Petzold, 1984). Loosely speaking, the index
of a DAE system is the minimum number of differentiations
required to convert it to an equivalent ODE system. Clearly,
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ODE systems are DAE systems of index zero. DAE systems
of index one also share similar properties with ODE systems.
However, DAE systems with index greater than one (referred
to as high-index systems) demonstrate significant differences
compared to ODE systems (Petzold, 1982). The presence of
underlying algebraic constraints in such systems makes the
specification of consistent initial conditions a nontrivial prob-
lem (Leimkuhler et al., 1991; Pantelides, 1988), while the use
of ODE methods for their numerical simulation may result in
poor convergence properties (Petzold, 1982; Brenan, 1983).
To overcome these difficulties, techniques involving combi-
nation of algebraic manipulations and differentiations have
been proposed to reduce high-index DAEs to ODEs (Gear and
Petzold, 1984; Gear, 1988) or index-one DAEs (Bachmann et
al., 1990). These index reduction techniques have been used
as the basis for the majority of proposed numerical simulation
methods for high-index DAE systems {Gear and Petzold, 1984;
Petzold, 1986; Chung and Westerberg, 1990; Secchi et al.,
1993). Nonlinear constrained optimization techniques have also
been proposed for this purpose (Renfro et al., 1987; Jarvis
and Pantelides, 1992).

Few results are available on the control of DAE systems,
with the exception of optimal control (Cuthrell and Biegler,
1987, 1989; Pantelides et al., 1992) using nonlinear optimi-
zation techmiques. The problem of feedback controller syn-
thesis has been addressed only for restricted classes of DAE
systems that arise mainly in the context of mechanical systems.
More specifically, state feedback stabilization and tracking
results have been derived for a class of linear (Krishnan and
McClamroch, 1990) and nonlinear (McClamroch, 1990; Krish-
nan and McClamroch, 1993; Yim and Singh, 1993) DAE sys-
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tems. A related problem of control of constrained nonlinear
ODE systems has also been studied (Chen and Shayman, 1992).
Feedback regularization of a restricted class of singular non-
linear implicit differential equations has also been employed
to overcome the singularity and use available ODE control
methods (Christodoulou and Isik, 1990). A close look on the
above research activity indicates the lack of a concrete meth-
odological framework for studying feedback control problems
for DAE systems that arise in chemical engineering. On the
other hand, recent advances in modeling have established the
fact that many chemical engineering processes are naturally
modeled by high-index DAEs (Byrne and Ponzi, 1988; Hind-
marsh and Johnson, 1988; Pantelides, 1988; Gani and Cam-
eron, 1992).

Motivated by the above, the objective of this work is to
develop a comprehensive framework for the analysis and feed-
back control of a broad class of nonlinear DAE systems. An
explicit feedback controller synthesis methodology will be de-
veloped on the basis of an equivalent state-space realization
for such systems. The application of the developed control
methodology will be demonstrated on a two-phase reactor,
modeled by an index-two DAE system.

DAE Systems: Preliminaries on Analysis and Con-
trol

We will consider nonlinear multi-input multi-output (MIMO)
DAE systems with a description of the form:

x=fx)+b(x)z+g(x)u
0=k(x)+1(x)z )

yi=h(x),i=1,..., m

where x€IR” is the vector of differential variables (those for
which we have explicit differential equations), z€IR? is the
vector of algebraic variables, u€IR"™ is the vector of manipu-
lated inputs, and y,, i=1, . . ., m are the controlled outputs.
In the above representation, f(x) is an analytic vector field
on IR”, k(x) is an analytic vector field on R?, b(x), g(x) and
I{x) are analytic matrices of dimensions (n X p), (nx m) and
(v X p), respectively, whereas A;(x), i=1, . . . , m are analytic
scalar fields. The above description of DAE systems (Eq. 1)
is in the so-called semiexplicit form (Gear, 1988), with the
algebraic variables z appearing linearly.

The consideration of semiexplicit DAE systems as compared
to fully implicit ones is motivated by chemical process appli-
cations, where the differential equations are obtained explicitly
from dynamic balances over mass and energy, and the algebraic
equations typically arise from equilibrium relations, empirical
correlations, and so on. Moreover, the linear occurrence of
the algebraic variables z is also typical in chemical processes
modeled by DAEs (such as, multiphase reaction and separation
systems with phase equilibrium, where the algebraic variables
include pressure and the interphase mass-transfer rates). Fi-
nally, the above representation of DAE systems (Eq. 1) includes
ODE systems and DAE systems studied in the context of other
engineering fields (McClamroch, 1990; Krishnan and Mc-
Clamroch, 1993; Yim and Singh, 1993) as special cases. Al-
though more general forms of DAE systems could be studied,
Eq. 1 allows sufficient generality for a broad class of practical
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applications, and explicitness and analytical insight into the
calculations.

For DAE systems of the form of Eq. 1, the index », (Gear
and Petzold, 1984) is defined as the minimum number of times
the algebraic equations have to be differentiated to obtain a
set of differential equations for the algebraic variables z.
Clearly, if the matrix /(x) is nonsingular, then the algebraic
equations can be solved directly for the algebraic variables z.
Differentiating the resulting expressions once, the differential
equations for z can be obtained. Hence, such systems have
index »,=1. On the other hand, if the matrix /(x) is singular,
then the algebraic equations are not directly solvable for z,
and more differentiations are needed to obtain an equivalent
ODE model. Hence, such systems have a high index (v;>1).
Moreover, each differentiation of the algebraic equations in-
troduces additional algebraic constraints, which give rise to
nontrivial problems in the numerical simulation and control
of such systems.

In this work, we will focus on high-index DAE systems. For
index-one DAE systems (Eq. 1), the algebraic equations can
be solved directly for the algebraic variables, to obtain:

z=—1(x) k(x) )]

Substitution of the resulting expression for z (Eq. 2) in Eq. 1
yields the following state-space ODE model:

x=[f(x)=b(x)(x) 'k(x)]+g(x)u
yi=hi(x),i=1,..., m

3

Thus, index-one DAE systems of the forms of Eq. 1 are similar
to ODE systems, and analysis and control of such systems can
be addressed directly on the basis of the equivalent ODE model
(Eq. 3).

Methodological framework

The process description of Eq. 1 does not constitute a stand-
ard state-space model, owing to the presence of algebraic vari-
ables z. Moreover, for high-index DAE systems, the algebraic
equations are not directly solvable for z and additional un-
derlying constraints among the process variables are also
present. As a result of these, system-theoretic issues like ex-
istence and uniqueness of solutions, stability, invertibility, and
the formulation and solution of controlier synthesis problems
are rather obscure on the basis of this representation.

Motivated by these considerations, the following method-
ology will be used in this work:

o Initially, we will address the problem of deriving an ex-
plicit state-space realization of the constrained process, that
is, a set of differential equations on x which describe the dy-
namics of the process consistent with the algebraic constraints:

k(x)+1(x)z=0 4)

To this end, an algorithmic procedure will be developed which
will allow to reconstruct z in terms of x and u and specify a
set of algebraic constraints among the differential variables x,
effectively yielding a state-space realization of the constrained
process.
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o The derived state-space realization will then be used as
the basis for formulating and solving an output feedback con-
troller synthesis problem.

Derivation of State-Space Realizations

Consider the description of the process dynamics:
x=f(x) +b(x)z+g(x)u )
and the algebraic constraints:
k(x)+1(x)z=0 ©®

The objective is to derive a state-space realization of the proc-
ess, consistent with the imposition of the algebraic constraints.
For the class of systems under consideration, this problem can
be addressed efficiently using techniques and methodologies
from nonlinear systems theory. More specifically, viewing the
algebraic expressions k (x) +/(x)z as a set of auxiliary outputs
¥ which are identically zero, and the algebraic variables z as
auxiliary inputs, the problem becomes the one of specifying
the zero dynamics of Eq. 5 with respect to y. Note the non-
standard form of the outputs y that depend on the inputs z
directly but in a singular way. The solution of the above prob-
lem entails the reconstruction of the algebraic variables z as
functions of x, u in a way that ensures that Eq. 6 and any
additional constraints generated by differentiating Eq. 6 are
satisfied.

In what follows, an algorithmic procedure will be presented
that solves the above problem. The procedure is based on
Hirschorn’s inversion algorithm (Hirschorn, 1979), which was
introduced in the context of calculating the inverse of a MIMO
nonlinear ODE system with a singular input/output map (in
the sense of singularity of the characteristic matrix). The al-
gorithm involves a sequence of elementary row operations that
localize the singularity in specific outputs, followed by the
differentiation of these outputs, until a nonsingular input/
output relation is obtained that can be solved directly for the
inputs.

Algorithmic procedure for reconstruction of algebraic
variables

Iteration 1. Consider the algebraic equations in Eq. 6, where
rank /(x) =p,<p.

Step 1. Calculate a p X p analytic nonsingular matrix E' (x),
which:

(i) Rearranges the rows of the matrix /{x) such that the first
p, rows of E'(x)!(x) are linearly independent, and

(ii) Reduces the last p—p, rows of E'(x)/(x) to zero.

Pre-multiplying the algebraic equations in Eq. 6 by the ma-
trix E'(x), the following relation is obtained:

X! "(x
0=[’f (x)]+[ ( )}z )
k'(x) 0
where the matrix I' (x) of dimension p; X p has full row rank
and the vector fields k' {x), £'(x) are of dimensions p, and
(p — p), respectively.

Step 2. Differentiate the last p — p;, equations of Eq. 7 once,
to obtain the following set of algebraic equations:
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0o k'(x) . 1'(x) oo g
T £ I | ? &l ®
where
k*(x)=[LA&I(x) -+ Lk}, (x)]T
and
Lm/?i (x) Lb,,lf} (x)
x)= : : ,
Lbﬁ:*m (x) prEL‘Px (x)
L ki(x) L, ki(x)
Fx)= .
Lg\IEP—Pl(x) Lg,,./e;l;—p,(x)

In the above relations, £} (x) denotes the ith component of
the vector field £'(x) and b, (x), g (x) denote the ith column
vectors of the corresponding matrices.

Step 3. Evaluate the rank p, of the matrix:

1'(x)
- %

*(x)
If p,=p then stop. If p,<p, then proceed to the next iter-
ation, starting with the new set of algebraic equations (Eq. 8).

Iteration q. Consider the following set of algebraic equa-
tions obtained from iteration ¢ — 1:

k() M(x) 0
K (x) 2(x) e’ (x)
o= = |+| : Jz+| 1 ju (0
k' (x) 1771 (x) 97 (x)
k9(x) T7(x) FI(x)
with
1'(x)
P (x)
rank =p,<p
1971 (x)
I (x)

Then, there exists an analytic nonsingular p X p matrix E?(x)
which:

(i) Rearranges the rows of /% (x) such that the first p, rows
of the matrix:

1" (x)
P (x)
E?(x) :
1977 (x)
I (x)
are linearly independent, and
Vol. 41, No. 3 621



(ii) Reduces the last p— p, rows of the above matrix to zero.
Furthermore, assuming that the augmented matrix:

' (x) 0
P(xy ¢ (x)

7‘1".(x) E"*'.(x)
7 (x) &(x)

has rank p,, the matrix E“(x) can be chosen so that the last
p—p, rows of the matrix:

0
& (x)
E?(x)
¢ (x)
¢ (x)

are also identically equal to zero.

Step 1. Pre-multiply the algebraic equations (Eq. 10) by
the matrix E9(x) to obtain:
k' (x) 1H(x) 0
k*(x) 12 (x) 2 (x)
O=| =+ [+] ¢ jz+| : | D
k9 (x) 19(x) ¢?(x)
k7 (x) 0 0
where the matrix:
1'(x)
> (x)
1%(x)

of dimension p, X p has full row rank, the matrix ¢7(x) has
dimension (p,—p,.,) % m and the vector fields k%(x), K7 (x)
are of dimensions (p,—p,_,) and (p— p,), respectively.

Step 2. Differentiate the last p—p, equations of Eq. 11
once, to obtain the following set of algebraic equations:

k'(x) 7' (x) 0
k*(x) P (x) @ (x)
0= : + c |zt : u (12
k7 (x) 1(x) ¢ (x)
ng+l(x) 1"‘q+1(x) é-;q+l(x)

Step 3. Evaluate the rank p,., of the matrix:
I'(x)
I (x)

17(x)
I”q+l (x)
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If p,.,=p then stop, else repeat the above steps for the next
iteration, starting with the new sets of algebraic equations (Eq.
12).

By construction, the algorithmic procedure generates a se-
quence of integers p, < p, < --- < p. For a well-posed DAE
system, the procedure converges after a finite number of it-
erations s, with the following final set of algebraic equations:

k' (x) 1" (x) 0
k2 (x) 7*(x) % (x)
0= : + Lzt Cu (13)
k(%) T (x) (%)
IE'HI (X) i’s+l (X) é’s+1 (X)
where the p X p matrix:
"(x)
2 (x)
I3 (.x)
Z'JH—] (x)

has full rank, that is, p,,,=p.

The final set of algebraic equations (Eq. 13) allows to re-
construct the algebraic variables z as a function of the differ-
ential variables x and the manipulated inputs u, as follows:

'x) 1 kHx) 0
I (x) k% (x) e (x)
z=—| S S N )
T (x) k5 (x) 2 (x)
1~s+1 (x) Esu (%) s+l (x)

Moreover, the algorithmic procedure identifies a set of
Ei_| (p—p,) algebraic constraints:

kl(x)=0

E;Am (X) = 0
: (15)
k5 (x)=0

£, (x)=0

among the differential variables x, which must also hold. Prop-
osition 1 that follows establishes the linear independence of
the scalar fields in Eq. 15 (the proof is given in Appendix A).

Proposition 1. Consider the DAE system of Eq. 1 for which
the proposed algorithmic procedure converges after s itera-
tions. Then, the Ii_, (p—p;) scalar fields £} (x), i=1, ...,
s;j=1, ..., (p—p;) obtained during the algorithmic proce-
dure are linearly independent.
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Proposition 1 leads to the following observations for the
DAE system of Eq. 1:

(1) Given x€IR", the linear independence of the scalar fields
implies that ], (p—p;) < n.

(2) The algebraic constraints of Eq. 15 allow a characteri-
zation of the state-space M C IR” where the differential vari-
ables x of the constrained DAE system (Eq. 1) must evolve.
More specifically, M = {x € R" : ki (x)=0,i=1,...,s;j=1,
.+, (p—p)}, which, given the linear independence of the
scalar fields I?j«(x), is a smooth manifold of dimension
n-Xi., (o= p). N

(3) The linearly independent scalar fields £} (x), i=1,...,
s;j=1, ..., (p—p;) can be used as a part of a nonlinear
coordinate transformation to derive a state-space realization
of the DAE system of Eq. 1. Details of the coordinate trans-
formation and the resulting state-space realization are given
in the next section.

Remark 1. Consider the DAE system (Eq. 1), for which
the above algorithmic procedure has converged after s itera-
tions, with the final set of algebraic equations (Eq. 13) solvable
in z. Differentiating the obtained solution for z (Eq. 14) once
more, a set of differential equations for z can be obtained.
Hence, the index of the DAE system (Eq. 1) is exactly s+ 1.
Moreover, according to Hirschorn (1979), the integer s rep-
resents the relative order of the auxiliary outputs y with respect
to the auxiliary inputs z for the system of Eq. 5. These ob-
servations establish a transparent relation between the concept
of relative order and the concept of index.

Remark 2. The assumption on the rank of the augmented
matrix made in iteration g{g>1) of the proposed algorithm
is satisfied for all index-two (the most common among chemical
processes) and many higher-index DAE systems of the form
of Eq. 1. It essentially allows us to obtain p- p, algebraic
equations involving only the differential variables x, in step 1
of iteration g. Thus, the algebraic equations obtained in step
2 of iteration g, which serve as the basis for iteration g+ 1,
do not involve any derivatives of the inputs u. This facilitates
the reconstruction of the algebraic variables z and the subse-
quent derivation of the state-space realization, independently
of the feedback law used for the manipulated inputs u.

Remark 3. For the special classes of DAE systems consid-
ered in Krishnan and McClamroch (1990), McClamroch (1990),
and Krishnan and McClamroch (1993) and under the assump-
tions made therein, the input/output map between the auxiliary
outputs ¥ and the auxiliary inputs z is nonsingular and the
above algorithmic procedure reduces to an explicit and direct
reconstruction of z in terms of x and u.

State-space realizations of the DAE system

The derived relation for the algebraic variables z (Eq. 14)
can be used to obtain a state-space realization of the DAE
system of Eq. 1 by eliminating the algebraic variables from
the modeling equations. The resulting state-space realization
is given the following proposition (see Appendix A for the
proof).

Proposition2. Consider the DAE system of Eq. 1 for which
the proposed algorithmic procedure converges after s itera-
tions. Then the dynamic system:
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oo 1 *x)
*(x) k*(x)
x=|fx)-bx)| : ;
(x) % (x)
Frix)] L (x)
I'(x) 1! _20
2(x) o (x)
+ | g(x)—-b(x) . u
iS(.x) Es(x)
i’s-H(x) 5x+](x)
=f (x)+2 (x)u (16)
yi=h(x),i=1,...,m
where x€M = {x€R" : kKi(x) = 0; i=1,...,s8/j=1,...,

(P —p;)}, is astate-space realization of the constrained process.

Remark 4. Consider the DAE system of Eq. 1 for which
the proposed algorithmic procedure converges after s itera-
tions, that is, its index is s+ 1 (see Remark 1). For the DAE
system comprising of the original differential equations (Eq.
5) and the new set of algebraic equations obtained after the
first iteration (Eq. 8), the proposed algorithm converges after
s— 1 iterations, that is, its index is s. Hence, it is clear that the
proposed algorithmic procedure reduces the index of the DAE
system in each iteration through a combination of algebraic
manipulations and differentiations. This motivates a compar-
ison of the proposed procedure with existing index reduction
techniques developed in the framework of numerical simula-
tion of high-index DAEs. The techniques of Gear and Petzold
(1984) for linear implicit DAEs, and Gear (1988) for nonlinear
implicit and semiexplicit DAEs, involve successive differen-
tiation of all the (underlying) algebraic equations. The pro-
posed procedure, on the other hand, exploits the specific form
of Eq. 1 to explicitly identify the smallest subset of algebraic
equations that need to be differentiated in each iteration. The
numerical simulation algorithm of Chung and Westerberg
(1990) for nonlinear implicit DAEs involves differentiation of
a subset of the equations with a single Jacobian without any
algebraic manipulations to identify the underlying algebraic
constraints, thereby introducing higher-order derivatives of the
original variables. Furthermore, the technique of Bachmann
et al. (1990) for linear DAEs replaces a set of redundant dif-
ferential equations with additional algebraic equations in each
iteration to obtain an equivalent index-one DAE system; the
proposed method, however, retains the differential equations
and eliminates the algebraic variables instead, yielding an
equivalent ODE system (Eq. 16).

Remark 5. The algebraic constraints of Eq. 15, which are
specified by the algorithmic procedure, provide an explicit
means for the choice of consistent initial conditions for the
differential variables x. Thus, numerical simulation techniques
for explicit ODEs can be used for the solution of DAEs in the
form of Eq. 1, on the basis of the state-space realization of
Eq. 16.

In view of the fact that the differential variables x are con-
strained to evolve on the manifold 9, of dimension n—L;_,
(p—p;), the state-space realization of Eq. 16 is not of minimal
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order. Such a realization can only be obtained in appropriate
transformed coordinates. More specifically, given the linearly
independent scalar fields I?} ®), i=1, ...,s j=1, ...,
(p—p;), one can always find k=n—L_, (p—p;) scalar fields
(%), . .. &) to complete a set of n linearly independent
scalar fields that qualify for a nonlinear coordinate transfor-
mation. Under such a coordinate transformation:

[+ [ 6]
£ 8u(x)
= = =1 _ 17
t=1 po | =TO=1 &1, (17)
L.g'zs)_ _’es(.x)_

the state-space realization of Eq. 16 takes the following form:

[0 [ Lo [ Lyéu ()]
..(0) — : ] :
I e IS i hid "
¢ L3k’ (x) L:k (x)
| (@) LK ]erw LLA D) Jrio
(18
Yieh (X =L, .0, m
where
L;; (x) =Lz i (x) + -+ Lz, d:i(x)]
Lk’ (x)
Lik' (x) = : ,
L7Ei(p—p,-)(x)
N Ly Ky (x) L; K} (x)
LK (x) = :

LExIei(p.—p.) (x)-- 'Limla(plm) (x)

and g;(x) denotes the ith column of matrix g(x). Proposition
3 that follows gives a reduced-order state-space realization for
the DAE system of Eq. 1 in these transformed coordinates (see
Appendix A for a proof of the proposition).

Proposition3. Consider the DAE system of Eq. 1 for which
the proposed algorithmic procedure converges after s itera-
tions. Then the dynamic system:

FO=fO>LO) 4 gOFO)y
yi=hi(x)‘x=T"(§'(°’0 ,,,,, 0)s :=1) PRPS (£ (19)

where
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[ Ly, (x)
o=
LL}¢x(x) x=T '¢®p0,. . ., 0
[ Lz (x)
O =| @0
_L§¢"‘ (x) x=T '(¢90, ...0)

is a state-space realization of the constrained process, of di-
mension (n —XZj_; (p—p))).

In the following section, we will formulate and solve an
output feedback controller synthesis problem for nonlinear
DAE systems of the form of Eq. 1.

Feedback Controller Synthesis
Preliminaries

For a DAE system of Eq. 1, various system-theoretic issues
(such as existence and uniqueness of solutions, equilibrium
points and their stability, zero dynamics and characterization
of minimum-phase behavior, and so on) can be addressed
directly on the basis of the equivalent state-space realizations
(Eq. 16 or Eq. 19) using existing results for ODE systems.
These state-space realizations can also be the basis for the
formulation and solution of an output feedback controller
synthesis problem for DAE systems of the form of Eq. 1. In
what follows, we will introduce some basic concepts that are
relevant to analysis and controller synthesis purposes, on the
basis of the state-space realization of Eq. 16.

For a DAE system of the form of Eq. 1, we define the
relative order r; of the output y; with respect to the manipulated
input vector u, as the minimum integer such that:

[LilL;_lhi(x) LgmL}'_lh,« (x)1[0 - -- 0]

for x€ X C M, where X is an open set containing the equilibrium
point of interest. If no such integer exists, then r;, = co. It will
be assumed that there is a finite relative order r; for each output
¥; to ensure output controllability. Then, the matrix:

ri=1

Le Ly hy(x) - Ly L] hi(x)
C(x)= : : @2n
Le LT ' hy(x) Ly LT hp(%)

is known as the characteristic matrix (Claude, 1986) for the
system of Eq. 16. A nonsingular characteristic matrix implies
a nonsingular input/output map between the manipulated in-
puts # and the controlled outputs y, thereby allowing the use
of combination of static state feedback laws and state observers
to enforce a desired closed-loop input/output behavior (Daou-
tidis and Kravaris, 1994). For simplicity, it will be assumed
that the characteristic matrix C(x) (Eq. 21) is nonsingular on
X. Moreover, it will also be assumed that the unforced zero
dynamics for the system of Eq. 16 (or equivalently Eq. 19) is
locally asymptotically stable, that is, the DAE system of Eq.
1 is minimum-phase.

Remark 6. In the case where the characteristic matrix C(x)
(Eq. 21) is singular, an output feedback controller can be
derived through the combination of a dynamic state feedback
law with state observers (Daoutidis and Kumar, 1994).
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Problem formulation

Consider a minimum-phase DAE system of the form of Eq.
1 with the equivalent state-space realization (Eq. 16) and a
nonsingular characteristic matrix C(x). It is desired to derive
a dynamic output feedback controller that uses the measure-
ments of the outputs to enforce the following closed-loop ob-
jectives:

(1) Induce a closed-loop input/output response of the form:

y+ Z Z 7y 2 dt, =Yy 22)

i=1 j=1

-+ ¥ypml are the output and
™" are vectors of adjustable

where y=1[y, - -+ v, y,= lys,,l .
set point vectors, and y;; = [y} -
parameters.
(2) Reject unmeasured disturbances and modeling errors.
(3) Ensure closed-loop input/output and internal stability,
subject to the constraints imposed by the algebraic equations.

Controller synthesis

The output feedback controller synthesis problem for the
DAE system of Eq. 1 will be addressed through a combination
of state feedback with a suitable state observer. Following this
approach, first, we will address the synthesis of a state feedback
controller that induces the following input/output behavior:

o, @
Z Z ﬁz/ dtj - (23)

i=1 j=0
where v=[v, - - - v,]” is a vector of external reference inputs,
8= [B}j s BY T are vectors of adjustable parameters, and

provides input/output and internal stability in the closed-loop
system, subject to the underlying constraints of Eq. 15. The
main result is given in Theorem 1 that follows (for a proof see
Appendix A).

Theorem 1. Consider a DAE system of the form of Eq. 1
with an equivalent state-space realization of the form of Eq.
16 for which det C(x) #0, vx€X. Then the static state feedback
law:

m

=By, -+ B JC(X)}~ ( -3 'B,-,Lf;hxx)) 4)

i=1 j=0

induces the input/output behavior:

r; d :
Z Z ﬁ‘l dt);

i=1 j=0

subject to the underlying constraints imposed by the algebraic
equations.

The bounded-input bounded-output (BIBO) stability of the
closed-loop system can be ensured by a proper choice of the
adjustable parameters 35. Besides BIBO stability of the closed-
loop system, it is necessary to ensure the internal stability of
the closed-loop system, that is, the local asymptotic stability
of the unforced (v=0j closed-loop system. It can be verified
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that the unforced closed-loop system is locally asymptotically
stable if the following two conditions hold:

(1) The parameters 3% are chosen properly to ensure BIBO
stability of the system with the input/output behavior of Eq.
23.

(2) The unforced zero dynamics of the process is locally
asymptotically stable, that is, the process is minimum-phase.

Given the state feedback controller of Eq. 24 which induces
the linear input/output behavior of Eq. 23, a linear error
feedback controller with integral action can then be incor-
porated around the linear v — y system to enforce the requested
closed-loop input/output behavior of Eq. 22 and guarantee
rejection of disturbances and modeling errors. For example,
one such error feedback controller realization has the form
(Daoutidis and Kravaris, 1994):

Ep=g

B0 =g
-

E(”— (['er1 . 'Ymrm]— l)1 l: (ysp )’) - Z,Z,Y’*Ef(i)l:l

i=1j=1
fm =gy

E(m) — (m)

rm—17

£ = (v, - vm,mr‘)m[ V=) = 227,,2;91}

i=1j=1

m ri—

v= ZZBI/E} +[Blr,
i=1j=0
[(ysp y)—izv,,sm} 25)

i=1j=1

er,,,][‘er, et ’Ymr,,,]v]

where the symbol (), denotes ith row of a matrix.

A combination of the static state feedback law of Eq. 24
with the linear error feedback controller of Eq. 25 provides a
mixed error and state feedback controller that induces the
desired closed-loop objectives. A dynamic output feedback
controller that enforces these closed-loop objectives can then
be derived by combining the state feedback controller (Eq. 24)
and the linear error feedback controller (Eq. 25) with an ap-
propriate state observer. Following the procedure of Daoutidis
and Kravaris (1994) for stable processes, the equivalent state-
space realization of Eq. 16 itself can be used as an open-loop
observer to estimate the states x; while for open-loop unstable
minimum-phase processes, the stable modes of the zero dy-
namics can be used instead for the state reconstruction. A
more detailed exposition along the above lines is omitted for
brevity.

Application of the Control Methodology to a Two-
Phase Reactor

A broad class of chemical processes modeled by high index
DAE systems consists of multiphase systems where the indi-
vidual phases are in thermodynamic equilibrium. Typical ex-
amples of such systems include distillation columns, multiphase
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Figure 1. Two-phase reactor.

reactors, multiphase separation units, and so on. In what fol-
lows we will consider a vapor-liquid reaction system ina CSTR,
with the two phases in physical equilibrium. Several fluid-fluid
reaction systems that fall in the framework of the example can
be found in Doraiswamy and Sharma (1984).

Process description

Consider the two-phase (liquid- and vapor-phase) reactor
shown in Figure 1. Reactants A and B are fed to the CSTR
as pure vapor and liquid streams, respectively, at molar flow
rates F,, and Fj,, while the two outlet streams from the liquid
and vapor phases have molar flow rates F;, and F, respectively.
It is assumed that the individual phases are well-mixed and
they are in physical equilibrium at pressure p and temperature
T, that is, the chemical reaction is slow compared to the mass
transfer across the interface. The molar specific heat capacity
¢,, density p, and latent heat of vaporization AH" are also
assumed to be constant and equal for all the species. Reactant
A diffuses into the liquid phase, where a reaction of the form:

A+B-C
takes place. The rate of formation of the product C is given
by:
Ro=k, exp(—E,/RT)C,CsV,
=k, exp(— E,/RT)N, pxqxp
where k, and E, are the pre-exponential factor and activation
energy, respectively, N, is the liquid-phase molar holdup, C,,
Cjp and x,,, x are the molar concentrations and mole fractions

of the reactants 4 and B in the liquid phase, and V; is the
liquid holdup volume, given by:
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Product C then diffuses out into the vapor phase (product
phase). Reactant B is assumed to be nonvolatile, that is, only
the reactant A and the product C are present in the vapor
phase while all the three species are present in the liquid phase.

The dynamic conservation equations for this process consist
of the total mole balances in the liquid and vapor phases, the
mole balance for the species A in the vapor phase, the mole
balances for species A, B in the liquid phase, and the total
enthalpy balance. The total enthalpy in the two phases is given
by:

H=N,H;+NyH,

where H,, H, are the molar enthalpies in the liquid and vapor
phases respectively, given by:

H1=CpT
H,=H+AH"®
=c,T+AH'

In addition to these differential equations, the model consists
of algebraic relations which include phase-equilibrium rela-
tions for the species A and C present in both phases, and the
ideal gas law for the vapor phase. For simplicity, Raoult’s law
is assumed for the phase-equilibrium relations:

DPYa=Pix,
PYc=Pixc
where y,, yo=(1-y,) are the mole fractions of 4 and C in

the vapor phase, and P, P¢ are the saturation vapor pressures
for A and C, given by the following Antoine relation:

s 3,919.7
L= €Xp (30.5 T34, 1)

5,000
&= exp (30.0 - )

T+70

Under the above assumptions, the process description takes
the form:

dN,

dtVZFAo_NA+NC—FV

dys Fao(l—y4) I-y, Ya
A - N,— [Z2)N,
dt N, N, )77 \w )¢
dN,

—dTL=FBa—FL~Rc+NA—NC

dx, Fgox4a+Ro(1—-x4) 1—x, X4
— = + N, ~ N,
dt ( N, N, )TN

de_ Fgo(1—x5) —Re(1—x5) Xp Xp
i () (e (R

di 1Ao 1 Bo
_— (T, - +—=2  (T.—T
dt (N.,+N)) (Tao ) (N, +N,) (T, )
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Table 1. Reactor Parameters and Variables and their Nominal and the manipulated inputs:

Values
Nominal um=Fy, u,=Q
Variable Description Value
S Molar heat capacity (J/mol-K) 20 the above process description takes the form of Eq. 1 with:
E, Activation energy (kJ/mol) 110
F,, |Inlet vapor stream molar flow rate 171.25 flx)=
(mol/s) r B
Fp, Inlet liquid stream molar flow rate 300 | P
(mol/s) Fo(l-x)
F; | Outlet liquid stream molar flow rate 375 SAot” 72
(mol/s) Xy
Fy Outlet vapor stream molar flow rate 50 -
(mol/s) Fpo—Fi=Rc
k, Preexponential factor (m*/mol-s) 1.0e+11
N, Liquid-phase molar holdup (kmol) 12.807 - M
N, Vapor-phase molar holdup (kmol) 12.839 X3
Q Heat input (kW) 100
R Universal gas constant (J/mol-K) 8.314 (Fgo—Re) (1=x5)
T Reactor temperature (K) 341.51 hx*
T4 Inlet vapor stream temperature (K) 310 3
Tz, Inlet liquid stream gemperature (K) 298 1 AH.
Vr | Reactor volume (m°) 3.0 FilT, —x)+FolTa — R _ZR
X4 Mole fraction of species A4 in liquid phase | 0.238 <x] +x3> [ 40 (T0=Xe) 50 (T Xs) + Re{ X ¢
Xp Mole fraction of species B in liquid phase | 0.677 L _
Ya Mole fraction of species A in vapor phase | 0.716
AH, | Heat of reaction (kJ/mol) 50 r -
AH" | Latent heat of vaporization (kJ/mol) 20 -1 1
o Liquid-phase molar density (kmol/m?) 15
1-x, X,
X X1
R AH, AHP ! -1
e T= =2 ) 4 (N, = No)
(N.+Ny) c (N.+Ny)e, b(x)= 1-x, Xy ,
1 X3 X3
+ —_—————
N+ NG © <> <>
0= —X4P5+pya & &
0= ~(1=x,—xs) P& +p(1-y,) < AH _(_aE
(x1+x3)c (x1+x3)¢
Vro—N, L ? .
0= —NVRT+M (26)
p
In the above equations, N, is the molar rate of transfer of [ -1 0 1
reactant 4 from the vapor of the liquid phase, N, is the molar 0 0
rate of transfer of product C from the liquid to the vapor
phase, Q is the heat input to the reactor and V7 is the reactor 0 0
volume. A detailed description of the process parameters and g(x)= 0
variables is given in Table 1 along with their nominal steady- 0
state values. For this process, it is desired to control the com- 0 0
position of the vapor phase y, and the temperature 7, using
the vapor stream outlet flow rate F, and the heat input Q as 1
the manipulated inputs. L (x1+x3)c,
Defining the differential variables: i
X1=Ny, X2=Ya, X3=Np, X4=Xa, Xs=Xp, Xs=T —x, P, 00 X,
the algebraic variables: k(x)=| —(1-x=x)PL|, l(x)=| 00 (1=%)
_Rxlx6 (VTp_x3)
Z=Na, 22=Nc, z:=p 00 )
the controlled outputs: h(x)=x,
n=ya =T hy(x) = Xs 27N
AIChE Journal March 1995 Vol. 41, No. 3 627



Clearly, the matrix /(x) is singular indicating a high index for Step 1. The following matrix:

the DAE system. .
A common approach to avoid modeling this process by a ﬂ) 0 1

high-index DAE system is to assume negligible vapor holdup

compared to the liquid holdup, thus eliminating the need to 1 1 0 — ( Xap >

model the vapor dynamics. The modeling equations under this E(x)= Vro—X;

simplifying assumption consist solely of differential equations

obtained from the total mole balance, the mole balances for 01 - (S:_XZ_)’J>
V9o —X; J

species 4, B, and the total enthalpy balance where the total
was used to pre-multiply the algebraic equations to obtain:

enthalpy is given by:

H_—‘NLH]:N[CpT

o -

Rxx4
Based on this simplifying assumption, the following ODE R
del can be easily derived: Xy — pRY X%
e 0=~ T\ V-x
dN, Rx, (1—X5)x,
EE=FAO+FBO—FL_FV_RC i;(l—X4—X5)_<'_—'p x"/( — h) A
L TP — X3
dx, 1
—A=—{Fao(1=x4) = FaoXa = Fy(ya—X4) —Rc(1-x4) }
dt N Voo
0 0 < TP 3)
dxp 1 P 2
E"]\_;L{—‘FAOXB+FBO(1—XB)+FVXB_RC(1_XB)} +10 o 0 =l 29
0 “
511—-1--{1? (¢,(Tyo—T) + AHY) + Fyoc,(Tgo— T) ° °
dt _Nch Ao\bp Ao Bobp Bo
Thus, identifying two constraints:
—FyAH +Re(c,T-AHR)+ Q) (28)
[ A
where y, can be directly eliminated from the above ODE model - £ (x)
using the following equilibrium relation:
3 .
! exp(30.5- ,919.7 Xem PRX XX
y, = PAXA x6—34.1 V}"{)‘X}
A~ _
Pix,+ Pe(l—x,— =
A4 C( X4 xE) exp <30 0 5,000) (1 x x ) <pr1 ( 1 —XZ)X6>
ISV Rt —~Xy— Xs) — _—
Clearly, the accuracy of this model depends on the validity Xs+70 Vro—x;
of the assumption that the vapor holdup N, is negligible com- (0)

pared to the liquid holdup N,. This assumption will not hold
at high pressures when the vapor holdup becomes comparable
to the liquid holdup. In the final section, the performance of
the nonlinear output feedback controller based on the DAE
model (Eq. 26) will be compared with that of a nonlinear output
feedback controller based on the simplified ODE model (Eq.

among the differential variables x.
Step 2. The last 2 equations of Eq. 29 were differentiated
once, to obtain the following set of algebraic equations:

28) to demonstrate the superiority of the former over the latter. Vio—x
The next section discusses the derivation of the equivalent R 0 0 (Li>
state-space realization for the DAE model (Eq. 26) following ~x1x6 P 4
the proposed algorithmic procedure and the resulting output 0= | k7 (x) [ + Ta(x) T3(x) 0 2
feedback troller. ;2 - -
eedback controller ki (x) B2(x) T3(x) 0 Z
State-space realization 0 0
Iteration 1. Consider the original algebraic equations: + ] &(x) Fh(x) I:ul] 31
Gix) G|t
0=k(x)+1(x)z
where k(x), /(x) are given in Eq. 27 and A detailed description of the individual terms in Eq. 31 is
included in Appendix B and is omitted here for the sake of
rank /{(x)=p,=1 brevity.
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Step 3. The rank of the matrix:

0 0 (VTP - xa)
o

(x)y Thx) 0
1~221 x) l?z(x) 0

was evaluated to be p, =3 = p. Thus, the algorithmic procedure
converged after s=1 iteration implying that the DAE system
of Eq. 26 has index v,=2.

From Eq. 31, it follows that the algebraic variables z,= Ny,

z,=Nc are given by:
—/~122 (x)]

al_ 1 )[ T3(x)
2| \det@*(x)/ | -Thx)  Th(x)
k3 (x) [511(3() é‘%z(x)][ul]}
- + (32
Xi[k%(x)} & ]| )
where:
det(7*(x)) =75 ()5 (x) = TR ()15 (x)
Substitution of Eq. 32 into the differential equations of the

DAE system (Eq. 26) gives the corresponding state-space re-
alization in the form of Eq. 16:

d_(, o W=D T+ TR
ar det(/"?)
— {1+ 4(x)Ju + L(x)u,
d_)_f_gz f(x)+(T§2/€%—7,22/€§)(1—x2)+(ff,/?%—l?,l?%)xz
dar ”? det (I *)x,

— (X)) — LX)y

dx, 7. )_(fzzzla—f:zz/g%)(l—x‘t).p(flzllgg_l"zzll‘(‘%)xA
o C‘Ct(fz)x3

+ t5(X)uy + L (XU,

gL 0 -
= X
g HO 7§I]C(x)}
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U - Bioxz—ml {fz(x) - ¢

v~ BiXs— Bh {fs(x) + <

dx. X cy iy ma i oy e P2
2 b0 () (- TR T3 T2

AH? o ey pen e ey e
{fe(ﬂ‘(mﬁ) (1222/(%_1122k§~112,k§+122]k§)}
1 374y

+t7(x)u,+{

(x1+x5)¢,

+ts(x)} u, (33)

where xeM = {xeR%: £} (x) =0, k1 (x) =0} (£} (x), £i(x) are
givenin Eq. 30) and t,(x), =1, . . . , 8 are nonlinear functions
of the differential variables x whose specific forms are included
in Appendix B.

Controller synthesis

Referring to the model of Eq. 33, it is straightforward to
verify that the relative orders of the controlled outputs y, = x,,
¥, =X, with respect to the manipulated input vector u = [, u,]”
are as follows:

n=1;, n=1 (34)

and the characteristic matrix:

—t;(x) —t(x)

C(x)= |
t(x) {m-”:a(x)}

is nonsingular. Thus, a closed-loop input/output decoupled
response of the following form was requested:

dy
N + ’Yh El ='yspl
dy
y2+7§l —dt_2=ysp2 (35)

According to Theorem 1, the static state feedback controller:

TRk -THkY) (1-x) + (ThA— T3k D)X,
det (7% x,

AHY o
(21 +x3)¢ det(fz))( Zzzk%—lzzzki—lﬁkhlf,kf)}
1 3)Cp
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Figure 2. Closed-loop profiles of controlled outputs and
manipulated inputs for a 15% decrease in the
set point for moie fraction of species A in va-
por phase.

induces the following linear input/output behavior:
dy,
VY B’
By +Bu dr 1

dy
Bloys+ B3 972 v, (37

between the inputs v=[v, v,]” and the outputs y.

The output feedback controller that induces the requested
response of Eg. 35 subject to integral action, was derived by
combining the state feedback controller of Eq. 36 with a linear

E 355
3
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Figure 3. Closed-loop profiles of controlied outputs and
manipulated inputs for a 2.5% increase in the
set point for temperature.
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Figure 4. Closed-loop profiles of controlled outputs and
manipulated inputs under a 5% increase in the
inlet flow rate F,,.

error feedback controller of the form of Eq. 25 and a state
observer. Following the approach of Daoutidis and Kravaris
(1994), the process model (Eq. 33) was used for the purpose
of state observation, given the open-loop stability of the proc-
ess at the nominal equilibrium point (see Table 1). The con-
troller was tuned by choosing the following set of parameters:

B}0=1'05 6}1;—1,5005
Bl=1.0, B7,=800s

¥11=1,500s, ~+3,=800s
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Figure 5. Closed-loop profiles of controlled outputs and
manipulated inputs for a 15% decrease in the
set point for mole fraction of species A in va-
por phase under initialization error.
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Figure 6. Closed-loop profiles of controlied outputs and
manipulated inputs for a 2.5% increase in the
set point for temperature under initialization
error.

Discussion of controller performance

The set point tracking and disturbance rejection capabilities
of the controller were evaluated through simulations.

The first two simulation runs addressed the set point tracking
capabilities of the controller. In the first run, the process, which
initially was at its nominal steady state, was subjected to a
15% decrease in yg,, or equivalently, an increase in the desired
mole fraction of the product C in the vapor phase, at time
t=35 min. The corresponding closed-loop profiles are shown
in Figure 2. Clearly, the controller enforced the requested first-
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Figure 7. Closed-loop profiles of controlled outputs and
manipulated inputs for a 15% decrease in the
set point for mole fraction of species A in va-
por phase under parametric uncertainties.
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Figure 8. Closed-loop profiles of controlied outputs and
manipulated inputs for a 2.5% increase in the
set point for temperature under parametric un-
certainties.

order response for y,, while maintaining y, at its nominal value.

In the second run, the process was subjected to a 2.5%
increase in y,,, that is, an increase in the desired reactor tem-
perature 7, at time =5 min. Again, the controller induced
the requested first-order response for y,, while maintaining y,
atits nominal value. The output and manipulated input profiles
are shown in Figure 3.

The third run addressed the disturbance rejection capabilities
of the controller. The process at its nominal steady state was
subjected to an unmeasured 5% increase in the vapor stream
inlet flow rate F,, at time =5 min. It can be seen from the
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Figure 9. Comparison of closed-loop profiles of outputs
and inputs for a 15% decrease in the set point
for mole fraction of A in vapor phase under
DAE- and ODE-based controllers.
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Figure 10. Comparison of closed-loop profiles of out-
puts and inputs for a 2.5% increase in the
set point for temperature under DAE- and
ODE-based controllers.

closed-loop profiles in Figure 4 that the two outputs return
‘smoothly to their respective set points, after initial deviations.

In the next two runs, the set point tracking capability of the
controller in the presence of initialization errors was studied.
The observer state corresponding to the liquid holdup N, was
subjected to a 5% initialization error, and a 15% decrease in
Y Was imposed at time £=5 min. Figure 5 includes the cor-
responding closed-loop profiles. Figure 6 shows the closed-
loop profiles when a 2.5% increase in y,,, was imposed at =35
min, under the same initialization error. As expected, the pro-
files depict a slight initial deterioration of the controller per-
formance with the overall performance being very satisfactory.

The performance of the controller under modeling errors
was also studied. Figure 7 shows the closed-loop profiles when
a 15% decrease in y,,, was imposed at £=35 min under 5%
errors in the values of molar heat capacity ¢, and molar density
p in the liquid phase. Figure 8 shows the closed-loop profiles
for the same parametric uncertainties, when a 2.5% increase
in y,; was imposed at =5 min. Despite these parametric un-
certainties, the controller provided very good closed-loop re-
sponses.

The subsequent runs compare the performance of the non-
linear output feedback controller based on the DAE model
(Eq. 26) with that of a nonlinear output feedback controller
based on the simplified ODE model of Eq. 28. Figure 9 shows
the respective plots for the two controllers when the process
was subjected to a 15% decrease in y,, at time =35 min. The
ODE-based controller provides a good response for y,, but it
does not provide the decoupled response as requested. In Figure
10, the closed-loop profiles for both controllers are shown for
a 2.5% increase in y,,. Clearly, the performance of the ODE-
based controller has deteriorated significantly compared to the
DAE-based controller. While, the DAE-based controller pro-
vides the smooth, decoupled responses as requested, the closed-
loop output profiles for the ODE-based controller show sig-
nificant deviations in y, and oscillations in y,, thus demon-
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strating the superiority of the DAE-based controller over the
ODE-based one.

Conclusions

In this article, we presented a systematic feedback controller
synthesis framework for a broad class of nonlinear MIMO
DAE systems in semiexplicit form. The coupled differential
and algebraic equations in such systems do not constitute a
standard state-space description, suitable for analysis and con-
troller synthesis. For this reason, an algorithmic procedure was
initially developed for the derivation of equivalent state-space
realizations for such systems. The procedure entails the re-
construction of the algebraic variables and the specification
of algebraic constraints among the differential variables im-
posed by the algebraic equations. An output feedback control
methodology that achieves desired closed-loop characteristics
was then developed, through combination of state feedback
and state observers. The developed control methodology was
applied to a two-phase reactor modeled by an index-two DAE
system with excellent servo and regulatory performance.
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Notation
b, g, | = matrices in the DAE model
E' = pxp nonsingular matrices
A If = vector fields in the DAE model
!_’ = vector field in state-space realization of dimension n
_ g = matrix in state-space realization of dimension »
K, k', B' = vector fields in the algorithm
I, T, ¢, & = matrices in the algorithm
h; = scalar fields in the DAE model
m = number of manipulated inputs and controlled outputs
IM = constrained manifold where differential variables
evolve
n = number of differential variables
p = number of algebraic variables
p; = ranks of matrices in the algorithm
s = number of iterations for convergence of algorithm
Yo = vector of output set points

Greek letters

By v; = vectors of adjustable parameters
= vector of state variables in transformed coordinates
¢ = vector of states of linear error feedback controller
¢; = scalar fields for coordinate transformation

Math symbols

R = real line
IR’ = i-dimensional Euclidean space
T = transpose
Lgk = Lie derivative of a scalar field & with respect to vector
field f
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Appendix A
Proof of proposition 1

Consider a DAE system (Eq. 1) for which the algorithm
converges after s iterations, that is, p,,,=p. The aim is to
prove that the I_,(p—p,) scalar fields £i(x), i=1, ..., s;
J=1,. .., (p—p;) are linearly independent. The scalar fields
I?}(x) are said to be linearly independent if the corresponding
gradient vector fields:

_ " ok! ok
dE}(x)=[ a]:,x) af;")]

are linearly independent (Kravaris and Kantor, 1990a). Simi-
larly, a scalar field \y(x) will be said to be linearly dependent
on scalar fields A\ (%), . . . , A(x) if the vector field d\(x) is
linearly dependent on the vector fields di, (x), . . ., d\(x).

A proof will be given following an inductive procedure sim-
ilar to that of Silverman (1969). The key idea of the proof is
to show that if, for any iteration g, a scalar field £7(x) is
linearly dependent on the scalar fields £} (x), . . . , Kp_, (x),

LRI, L R (), KL (x), ., kS, (x), then:

(i) pg+1<p; and

(ii) There exists a scalar field £2*'(x) in iteration g+1,
which is linearly dependent on the scalar fields £}(x), . . .,
kL, (x), .., KIx), .., KN, K, ..,
IE;',’: ,‘,q“ (x), thereby implying by induction that p,,,<p, which
clearly is a contradiction.

Let iteration g be the first iteration when a scalar field
ki(x)e(k{(x), ..., k-, (x)} is linearly dependent on the
remaining scalar fields in the set:

1), .

K(x), ..

kg (),

j{q(x)= -.) Pp—pz(x)r

R, oo R (), K)o, Ky (0)
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Define the following two disjoint subsets of scalar fields:

Kl (x) = {ki(x)eR(x):dk}(x)b(x)
is a row of the matrix L7(x)}
Rl (x) = (Ki(x)eR(x):dk!(x)b(x)

is a linear combination of the rows of LY(x)}

where:

1'(x)
Li(x)=
7q+1(x)

Furthermore, define the vector fields If"" (x), K" (x) com-
prising of the scalar fields in the sets &9 (x), and K" (x),
respectively, such that:

L) = 1'(x)

= dR% (x)b(x)
Then, owing to the linear dependence of the scalar field k(x)
on the scalar fields in the set &9(x), there exist row vectors
R,(x) and R,(x) such that:

dk? (x) = R, (x)dR% (x) + R, (x)dR*" (x) (38)

Moreover, by the definition of the two subsets X2/(x), X**(x)
and the assumption on the rank of the augmented matrix in
the algorithm, there exists a matrix S, (x) such that:

I'(x)
N/ =
dR*" (x)b(x) Sl(x)[d[f"”(x)b(x)]

=8 (x)L(x)

dRK*"(x)g(x) =S,(x) [ (39

0
dR*'(x)g(x)

From Eq. 38 and Eq. 39, it follows that:

I+ (x) =dk# (x)b(x) =R, (x)dK? (x)b(x)
+ Ry (x)S1(x)L(x) (40)

proving that the row vector [4*!(x) is linearly dependent on
the rows of the matrix L(x), that is, p,.,<p.

The relation in Eq. 40 implies that in step 1 of iteration
g+1, the row vector [?*'(x) and the row vector
&7 (x) =dk?(x)g(x) can be reduced to zero through ele-
mentary row operations. Under the requisite row operation,
the corresponding algebraic constraint:

0=K2*"(x) = {dk?(x)f(x) — R, (x)dR* (x)f(x)}

k' (x)
—R;(x)S;(x) [ dRe! (x)f(X):!

634 March 1995 Vol. 41, No. 3

=Ry (x)dR*" (x)f(x)

k'(x)
- R,(x)S; (X)[

) 41
dk*' (x)f (x)] @b

is obtained. Also, by definition, the p,,, X p matrix L?(x) has
full row rank, which implies that there exists a matrix:

L9 (x) =L (x)[L9(x) L7 (x)] '

such that L9(x)L?'(x)=1, ,. Thus, from Eq. 39 it follows

that:

g+ 1

Ry (%) 81 (x) = Ry (x)dR* (x) b (x) L7 (x)

Substituting the above relations for R,(x)S,(x) in Eq. 41 the
following relation is obtained:

k71 (x) = Ry (x)dK*" (x)
k'(x)

x {f(X) ~b(OLY (x) [ 2R (%) f(x)]} (42)
Furthermore, consider the matrix:
[ dkT" (x)b(x) ]

dke’ (.x)b(x)

q,1T =
dk*" (x)b(x) dk# (x)b(x)

i dEZ'_”,,q”‘(x)b(x)_

with its rows linearly dependent on the rows of L7(x), by the
definition of the set &9(x). Then, there exists a matrix ¥%(x)
such that:

dk " (x)b (x) =v%(x)L%(x)
Clearly,
vi(x) =dk®" (x)b(x)L" (x)

Thus, the rows of dk%" (x)b(x) (and correspondingly the rows
of dk®"(x)g(x)) can be reduced to zero through row oper-
ations in step 1 of iteration g+ 1, yielding the remaining
P—D,.— 1 algebraic constraints (besides the constraint in Eq.
41):

[ £+ (x) ]

g+l
o= | KT ket vy £y — 49 (x) [

k'(x)
kit (x) dRe1(x)f(x)

| £2h 0

=dk"" (x) {f(x) ~b(x)L" ()| K 43)
dR% (x)f(x)
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From the relations in Eq. 42 and Eq. 43, and the definition
of R?"(x) it follows that:

kI (x) =Ry (x)e?* ! (x)

=D Ry(x)of T (x) (44)

i=1

where a?* 1 (x) =[a?* ' (x) + - a2t (x)]” such that:

of M )eR ()

and R,;(x) is the ith component of the row vector R,(x).

Claim. The gradient vectors dR,;(x) are linearly depen-
dent on the row vectors of dK?* " (x) and dK?*"#(x).

If the above claim is true, then it is straightforward to verify
that the gradient vector dk9*'(x) is linearly dependent on the
row vectors of dK9* " (x), dR?* " (x), that is, the scalar field
£2+'(x) is linearly dependent on the scalar fields in the set
%9+!(x). Thus, the whole argument can be repeated for it-
eration (g + 1) implying that p, ., <p. By induction, it can then
be shown that p,, ,<p, leading to a contradiction.

Proof of Claim. Consider the relation in Eq. 38. Without
loss of generality, it is assumed that the scalar fields in the sets
&2 (x) and &K% (x) are linearly independent. If there are some
scalar fields in the set X7 (x) that are linearly dependent on
the others, then the corresponding component of R,(x) will
be identically equal to zero. Let p = u, + p,, where p,, u, denote
the number of scalar fields in the sets X%/(x) and X% (x),
respectively. Then it is always possible to find 7 — u scalar fields
Yi(x), ..., ¥,_,(x) which together with the scalar fields in
the sets X2/(x) and 2" (x) comprise a set of n linearly in-
dependent scalar fields, thus, qualifying for a nonlinear co-
ordinate transformation. Consider such a coordinate

transformation:

S T [ K7 (x) ]
f;. Iéﬁ1’
[ K" (x)

== ;

?u K (x)
$uss ¥ (x)

B e

In the new coordinates ¢, the row vectors dK?/(¢) take the form
[0---0 1 0---0] with the nonzero entry 1 in the ith position,
while the row vectors dR#(¢) take the form [0 --- 0 1 O - --
0] with the nonzero entry 1 in the (g, + i)th position. Clearly,
the row vector dk?(¢) must have the form [* --- % 0 --- 0],
that is, only the first x4 entries can be nonzero (denoted by *).
Thus, it follows that (3R, (§)/35)=0,7=1,. . . ,usl=(u+1),

., n which implies that the gradient vectors dR, {{) must
be linearly dependent on the row vectors of dK%/(¢) and
dR*(¢), completing the proof of the claim.
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Proof of proposition 2

The algebraic constraints of Eq. 13 identified by the pro-
posed algorithmic procedure directly imply that the algebraic
variables z vary according to the relation of Eq. 14. It is then
straightforward to show that for a set of initial conditions x(0)
such that £/(x(0))=0; i=1,...,s,j=1,..., (p—-p), and
z satisfying Eq. 14, the algebraic constraints of Eq. 15 and
Eq. 6 are satisfied and the differential variables x evolve on
IN. A direct substitution of Eq. 14 in the differential equations
of Eq. 5 yields the state-space realization of the constrained
system given by Eq. 16, completing the proof of the propo-
sition.

Proof of proposition 3

Consider the state-scape realization of Eq. 18 of the con-

strained process where, x (7)€, that is, I?}(x(t)):O; i=1,

8 j=1,..., (p—p). In the transformed coordinates

¢, the condition x(#)€IMN implies that the variables {”; i=1

a8 j=1,. .., (p—p) are identically zero, which directly
leads to the state-space realization of Eq. 19.

Proof of theorem 1

Consider the DAE system of Eq. 1 which, under the control
law of Eq. 24, yields the following closed-loop DAE system:

x=f(x) +b(x)z+g(x){{By, -+ B, JC()}

x <v— iz 3,-,L§h,.(x)>

i=1j=0
0=k(x)+1(x)z

yi=hi(x);i=1,...,m 45)
A state-space realization for the closed-loop DAE system of
Eq. 45 can be obtained following the algorithmic procedure
proposed earlier. 1t is straightforward to show that the algo-
rithmic procedure converges after exactly s iterations, identi-
fying the same algebraic constraints among x (Eq. 15) and
yielding the following relation for z:

I'x) 7 k' (x) 0
(x) k2 (x) T (x)
== S o
P(x) k*(x) c*(x)
"s+1(x) I’Es+l(x) E.H-l(x)

m I

X {[Bi, -+ B, JC(x)} 7! (v— >,

i=1J=

BUL§h,~<x)> } 46)
0

Thus, the state-space realization of the closed-loop dynamics
takes the form:

x=F(x) +Z(xX)C () By, -+ B, 1™
X {v— ZZ Bi,-L§h;(X)}
i=1j=0

yi=h(x);i=1,...,m @n
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where x€M and f(x), g(x) are defined in Eq. 16. Calculating
the expressions for the derivatives of the outputs, that is, d'y,/
de/,i=1,...,m;j=1,...,r, on the basis of Eq. 47 and
substituting in Eq. 23, it is then straightforward to show that
the input/output behavior of Eq. 23 is indeed enforced.

Appendix B

This section includes a detailed description of the terms
involved in the state-space representation of the DAE system
of Eq. 26 and the resulting feedback controller:

k= —Bllfl(x)+6Lf3(x)]+Pi4f4(x)+'Yl(xl+x3)f6(x).

= ‘552(

[,=6,Q _62)+PA<

)fs(x) cLfa(x) +f5(x)]

+ 2 (0 +x3) S5 (x)
1—x, N AH'
X3 ) 71( Cp >

. 1-—- v
a1 (H20) | _py) )

%2

Eh=Bix,

& _n

2= c

2

a=B8{l1-x)
72

2

Cn=
Cp

+I5)x-Th~T1]

1 - - ~ .
L(x)=— <W> (H+T5) v, — TG+ T3) v

H(x)= )[[(7§2+1"fz>x2—1'.22}(1—x2)

(xdet(l %)

+{I3- (T3

If)x)x)
fL(x)=— x,c,,det(l )>[(1~22271~1~fm)(1—x2)

+ (v~ v)xl
9= = (g U T3+ oo Tha 0

+{Th- (7221+l~121)x2}x4]

t(x)= ( cdet(12)>[(f222‘}’1“1~122’¥2)(1‘X4)

+ (- T3y1)xd
AHY

H(x)=4LH{xX)| ———
LX) =1, ((x,+x3)c,,>
ta(x) = — L(x) _AHY
X : (x;+x3)¢,
where

_ pRx

By Vrp—x
X
g Vip—x

(1 39197 L
Y1 X]+XJ (x6—34-1)2 aXs—p. BZ
1 5,000
1= <x1+x3) [(x6+70)2 Pe(1=xi—x9)

_ (B1-x:)0R
X2
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