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The output feedback control problem is addressed for a class of nonlinear mul- 
tivariable high-index differential-algebraic-equation systems in semiexplicit form. 
InitialIy, an algorithmic procedure is developed and used to derive an equivalent 
state-space realization of the constrained system. A n  output feedback synthesis 
problem is then formulated on the basis of the derived state-space realization and 
solved through the combination of state feedback and appropriate state observers. 
The developed methodology is applied to a two-phase reactor, and its performance 
and robustness characteristics are evaluated through simulations. 

Introduction 
Chemical processes are inherently nonlinear and multivar- 

iable, and are typically modeled by coupled differential and 
algebraic equations (DAEs). The differential equations arise 
from dynamic conservation equations, while the algebraic 
equations commonly arise from thermodynamic equilibrium 
relations, empirical correlations, pseudo-steady-state assump- 
tions, closure conditions, and so on. For many chemical proc- 
esses, the algebraic equations are implicit and singular in nature, 
inhibiting a direct reduction of the process model to one con- 
sisting of pure differential equations. 

Despite the above inherent complexities in the structure of 
chemical processes, traditional process control methods are 
based on linear ordinary differential equation (ODE) models, 
derived through approximate linearization of nonlinear ODE 
models. Application of such methods to processes with strong 
nonlinearities and algebraic constraints clearly limits the con- 
troller performance and the achievable control quality. These 
considerations indicate a need to develop control methodol- 
ogies for nonlinear DAE systems. 

Research on control of nonlinear ODE systems has advanced 
significantly to a stage where key system-theoretic concepts 
are well understood (Isidori, 1989; Nijmeijer and van der 
Schaft, 1990) and explicit controller synthesis results have been 
derived (for example, Kravaris and Kantor, 1990a,b; Kravaris 
and Arkun, 1991). On the other hand, research on DAE sys- 
tems has focused mainly on their analysis and the development 
of efficient numerical simulation techniques. A key concept 
used to classify DAEs is that of the differential index (or simply 
index) (Gear and Petzold, 1984). Loosely speaking, the index 
of a DAE system is the minimum number of differentiations 
required to convert it to an equivalent ODE system. Clearly, 

ODE systems are DAE systems of index zero. DAE systems 
of index one also share similar properties with ODE systems. 
However, DAE systems with index greater than one (referred 
to as high-index systems) demonstrate significant differences 
compared to ODE systems (Petzold, 1982). The presence of 
underlying algebraic constraints in such systems makes the 
specification of consistent initial conditions a nontrivial prob- 
lem (Leimkuhler et al., 1991; Pantelides, 1988), while the use 
of ODE methods for their numerical simulation may result in 
poor convergence properties (Petzold, 1982; Brenan, 1983). 
To overcome these difficulties, techniques involving combi- 
nation of algebraic manipulations and differentiations have 
been proposed to reduce high-index DAEs to ODES (Gear and 
Petzold, 1984; Gear, 1988) or index-one DAEs (Bachmann et 
al., 1990). These index reduction techniques have been used 
as the basis for the majority of proposed numerical simulation 
methods for high-index DAE systems (Gear and Petzold, 1984; 
Petzold, 1986; Chung and Westerberg, 1990; Secchi et al., 
1993). Nonlinear constrained optimization techniques have also 
been proposed for this purpose (Renfro et al., 1987; Jarvis 
and Pantelides, 1992). 

Few results are available on the control of DAE systems, 
with the exception of optimal control (Cuthrell and Biegler, 
1987, 1989; PanteIides et al., 1992) using nonlinear optimi- 
zation techniques. The problem of feedback controller syn- 
thesis has been addressed only for restricted classes of DAE 
systems that arise mainly in the context of mechanical systems. 
More specifically, state feedback stabilization and tracking 
results have been derived for a class of linear (Krishnan and 
McClamroch, 1990) and nonlinear (McClamroch, 1990; Krish- 
nan and McClamroch, 1993; Yim and Singh, 1993) DAE sys- 
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tems. A related problem of control of constrained nonlinear 
ODE systems has also been studied (Chen and Shayman, 1992). 
Feedback regularization of a restricted class of singular non- 
linear implicit differential equations has also been employed 
to overcome the singularity and use available ODE control 
methods (Christodoulou and Isik, 1990). A close look on the 
above research activity indicates the lack of a concrete meth- 
odological framework for studying feedback control problems 
for DAE systems that arise in chemical engineering. On the 
other hand, recent advances in modeling have established the 
fact that many chemical engineering processes are naturally 
modeled by high-index DAEs (Byrne and Ponzi, 1988; Hind- 
marsh and Johnson, 1988; Pantelides, 1988; Gani and Cam- 
eron, 1992). 

Motivated by the above, the objective of this work is to 
develop a comprehensive framework for the analysis and feed- 
back control of a broad class of nonlinear DAE systems. An 
explicit feedback controller synthesis methodology will be de- 
veloped on the basis of an equivalent state-space realization 
for such systems. The application of the developed control 
methodology will be demonstrated on a two-phase reactor, 
modeled by an index-two DAE system. 

DAE Systems: Preliminaries on Analysis and Con- 
trol 

We will consider nonlinear multi-input multi-output (MIMO) 
DAE systems with a description of the form: 

x = f ( x )  + b ( x ) z  + g ( x ) u  

0 = k(x) + I (x)z  (1) 

y I = h , ( x ) ,  i = l ,  . . . , m 

where xEIR" is the vector of differential variables (those for 
which we have explicit differential equations), z€Rp is the 
vector of algebraic variables, UER" is the vector of manipu- 
lated inputs, and yi, i =  I ,  . . . , m are the controlled outputs. 
In the above representation, f (x)  is an analytic vector field 
on JR", k ( x )  is an analytic vector field on IRp, b ( x ) ,  g ( x )  and 
I ( x )  are analytic matrices of dimensions (n xp) ,  (n x m) and 
@ xp) ,  respectively, whereas hi(x), i =  1 ,  . . . , m are analytic 
scalar fields. The above description of DAE systems (Eq. 1) 
is in the so-called semiexplicit form (Gear, 1988), with the 
algebraic variables z appearing linearly. 

The consideration of semiexplicit DAE systems as compared 
to fully implicit ones is motivated by chemical process appli- 
cations, where the differential equations are obtained explicitly 
from dynamic balances over mass and energy, and the algebraic 
equations typically arise from equilibrium relations, empirical 
correlations, and so on. Moreover, the linear occurrence of 
the algebraic variables z is also typical in chemical processes 
modeled by DAEs (such as, multiphase reaction and separation 
systems with phase equilibrium, where the algebraic variables 
include pressure and the interphase mass-transfer rates). Fi- 
nally, the above representation of DAE systems (Eq. 1) includes 
ODE systems and DAE systems studied in the context of other 
engineering fields (McClamroch, 1990; Krishnan and Mc- 
Clamroch, 1993; Yim and Singh, 1993) as special cases. Al- 
though more general forms of DAE systems could be studied, 
Eq. 1 allows sufficient generality for a broad class of practical 

applications, and explicitness and analytical insight into the 
calculations. 

For DAE systems of the form of Eq. 1, the index ud (Gear 
and Petzold, 1984) is defined as the minimum number of times 
the algebraic equations have to be differentiated to obtain a 
set of differential equations for the algebraic variables z.  
Clearly, if the matrix I ( x )  is nonsingular, then the algebraic 
equations can be solved directly for the algebraic variables z .  
Differentiating the resulting expressions once, the differential 
equations for z can be obtained. Hence, such systems have 
index vd=.l. On the other hand, if the matrix I ( x )  is singular, 
then the algebraic equations are not directly solvable for z ,  
and more differentiations are needed to obtain an equivalent 
ODE model. Hence, such systems have a high index (vd> 1). 
Moreover, each differentiation of the algebraic equations in- 
troduces additional algebraic constraints, which give rise to 
nontrivial problems in the numerical simulation and control 
of such systems. 

In this work, we will focus on high-index DAE systems. For 
index-one DAE systems (Eq. l), the algebraic equations can 
be solved directly for the algebraic variables, to obtain: 

Substitution of the resulting expression for z (Eq. 2) in Eq. 1 
yields the following state-space ODE model: 

x = [ f ( x )  - b (x) I ( x )  - ' k ( x ) ]  + g(x )u  

y , = h , ( x ) ,  i = l , .  . . , m  
(3) 

Thus, index-one DAE systems of the forms of Eq. 1 are similar 
to ODE systems, and analysis and control of such systems can 
be addressed directly on the basis of the equivalent ODE model 
(Eq. 3). 

Methodological framework 
The process description of Eq. 1 does not constitute a stand- 

ard state-space model, owing to the presence of algebraic vari- 
ables z. Moreover, for high-index DAE systems, the algebraic 
equations are not directly solvable for z and additional un- 
derlying constraints among the process variables are also 
present. As a result of these, system-theoretic issues like ex- 
istence and uniqueness of solutions, stability, invertibility, and 
the formulation and solution of controller synthesis problems 
are rather obscure on the basis of this representation. 

Motivated by these considerations, the following method- 
ology will be used in this work: 

Initially, we will address the problem of deriving an ex- 
plicit state-space realization of the constrained process, that 
is, a set of differential equations on x which describe the dy- 
namics of the process consistent with the algebraic constraints: 

To this end, an algorithmic procedure will be developed which 
will allow to reconstruct z in terms of x and u and specify a 
set of algebraic constraints among the differential variables x, 
effectively yielding a state-space realization of the constrained 
process. 

620 March 1995 Vol. 41, No. 3 AIChE Journal 



The derived state-space realization will then be used as 
the basis for formulating and solving an output feedback con- 
troller synthesis problem. 

Derivation of State-Space Realizations 
Consider the description of the process dynamics: 

z +  

and the algebraic constraints: 

r Q  
- 

c2 ( X )  

cq-l(x) 

- P ( x )  

; u (10) 

The objective is to derive a state-space realization of the proc- 
ess, consistent with the imposition of the algebraic constraints. 
For the class of systems under consideration, this problem can 
be addressed efficiently using techniques and methodologies 
from nonlinear systems theory. More specifically, viewing the 
algebraic expressions k ( x )  + I (x )z  as a set of auxiliary outputs 
j which are identically zero, and the algebraic variables z as 
auxiliary inputs, the problem becomes the one of specifying 
the zero dynamics of Eq. 5 with respect to j .  Note the non- 
standard form of the outputs 9 that depend on the inputs z 
directly but in a singular way. The solution of the above prob- 
lem entails the reconstruction of the algebraic variables z as 
functions of x,  u in a way that ensures that Eq. 6 and any 
additional constraints generated by differentiating Eq. 6 are 
satisfied. 

In what follows, an algorithmic procedure will be presented 
that solves the above problem. The procedure is based on 
Hirschorn's inversion algorithm (Hirschorn, 1979), which was 
introduced in the context of calculating the inverse of a MIMO 
nonlinear ODE system with a singular input/output map (in 
the sense of singularity of the characteristic matrix). The al- 
gorithm involves a sequence of elementary row operations that 
localize the singularity in specific outputs, followed by the 
differentiation of these outputs, until a nonsingular input/ 
output relation is obtained that can be solved directly for the 
inputs. 

Algorithmic procedure for  reconstruction of algebraic 
variables 

Iteration 1. Consider the algebraic equations in Eq. 6 ,  where 
rank I ( x )  = p I  < p .  

Step 1. Calculate a p  x p  analytic nonsingular matrix El ( x ) ,  
which: 

(i) Rearranges the rows of the matrix I ( x )  such that the first 
p I  rows of E 1 ( x ) l ( x )  are linearly independent, and 

(ii) Reduces the last p - p I  rows of E ' ( x ) l ( x )  to zero. 
Pre-multiplying the algebraic equations in Eq. 6 by the ma- 

trix El ( x ) ,  the following relation is obtained: 

(7 )  

where the matrix 7' ( x )  of dimension p 1  x p  has full row rank 
and the vector fields k' ( x ) ,  k ' ( x )  are of dimensions p I  and 
(p -pl), respectively. 

Differentiate the lastp - p l  equations of Eq. 7 once, 
to obtain the following set of algebraic equations: 

Step2. 

where 

and 

F Z ( x )  = [L,k l̂ ( x )  . . . L&, ( X ) ] T  

In the above relations, k^,!(x) denotes the ith component of 
the vector field k^'(x) and b , ( x ) ,  g,(x)  denote the ith column 
vectors of the corresponding matrices. 

Step 3. Evaluate the rank p 2  of the matrix: 

(9) 

If p 2 = p  then stop. If p 2 < p ,  then proceed to the next iter- 
ation, starting with the new set of algebraic equations (Eq. 8). 

Iteration q. Consider the following set of algebraic equa- 
tions obtained from iteration q - l: 

with 

Then, there exists an analytic nonsingular p x p  matrix Eq ( x )  
which: 

(i) Rearranges the rows of Tq ( x )  such that the first po rows 
of the matrix: 

are linearly independent, and 
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(ii) Reduces the last p -pq  rows of the above matrix to zero. 
Furthermore, assuming that the augmented matrix: 

If pq+ = p  then stop, else repeat the above steps for the next 
iteration, starting with the new sets of algebraic equations (Eq. 

By construction, the algorithmic procedure generates a se- 
quence of integers p 1  5 p2 5 . . . 5 p .  For a well-posed DAE 
system, the procedure converges after a finite number of it- 
erations s, with the following final set of algebraic equations: 

12). 
0 

1 4 - '  (x) c4-I (x) I- P ( x )  P ( x )  

has rank pq ,  the matrix Eq (x) can be chosen so that the last 
p - p q  rows of the matrix: O =  

are also identically equal to zero. 

the matrix Eq (x) to obtain: 
Step 1 .  Pre-multiply the algebraic equations (Eq. 10) by 

O =  

where the matrix: 

k' (x) 
k2  (x) 

kQ (x) 
k^q (x) 

+ 

0 
c2 (x) 

2 (x) 
0 

where the p x p  matrix: 

Z+ 

has full rank, that is, ps+ I = p .  
The final set of algebraic equations (Eq. 13) allows to re- 

construct the algebraic variables z as a function of the differ- 
ential variables x and the manipulated inputs u,  as follows: 

U (1 1) 

of dimension p q x p  has full row rank, the matrix P ( X )  has 
dimension (p, -pq-  I) x m and the vector fields kq(x), kq (x) 
are of dimensions (p4 -p , - ' )  and @-p4) ,  respectively. 

Differentiate the last p -pq  equations of Eq. 11 
once, to obtain the following set of algebraic equations: 

Moreover, the algorithmic procedure identifies a set of 
Cs= I 0, - p , )  algebraic constraints: 

if; (x) = o  Step 2. 

(x) = 0 

(15) 
6 (x) =o 

among the differential variables x, which must also hold. Prop- 
osition 1 that follows establishes the linear independence of 
the scalar fields in Eq. 15 (the proof is given in Appendix A). 

Consider the DAE system of Eq. 1 for which 
the proposed algorithmic procedure converges after s itera- 
tions. Then, the Cf,l (p -p , )  scalar fields k; (x), i= 1, . . . , 
s; j =  1, . . . , @ - p i )  obtained during the algorithmic proce- 
dure are linearly independent. 

Proposition 1 .  
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Proposition 1 leads to the following observations for the 
DAE system of Eq. 1:  

(1) Given XCIR", the linear independence of the scalar fields 
implies that cS,l @ - p , )  5 n. 

(2) The algebraic constraints of Eq. 15 allow a characteri- 
zation of the state-space nt C IR" where the differential vari- 
ables x of the constrained DAE system (Eq. 1) must evolve. 
Morespecifically,nt=(xCIR": E;(x )=O, i= l , .  . . , s ; j = l ,  
. . . , @ - p i ) ) :  which, given the linear independence of the 
scalar fields k ; ( x ) ,  is a smooth manifold of dimension 
n - EL I (p -p,). 

(3) The linearly independent scalar fields k; ( x ) ,  i= 1 ,  . . . , 
s; j =  1 ,  . . . , (p -p , )  can be used as a part of a nonlinear 
coordinate transformation to derive a state-space realization 
of the DAE system of Eq. 1 .  Details of the coordinate trans- 
formation and the resulting state-space realization are given 
in the next section. 

Remark 1. Consider the DAE system (Eq. l) ,  for which 
the above algorithmic procedure has converged after s itera- 
tions, with the final set of algebraic equations (Eq. 13) solvable 
in z .  Differentiating the obtained solution for z (Eq. 14) once 
more, a set of differential equations for z can be obtained. 
Hence, the index of the DAE system (Eq. 1) is exactly s+ 1. 
Mbreover, according to Hirschorn (1979), the integer s rep- 
resents the relative order of the auxiliary outputs 7 with respect 
to the auxiliary inputs z for the system of Eq. 5 .  These ob- 
servations establish a transparent relation between the concept 
of relative order and the concept of index. 

The assumption on the rank of the augmented 
matrix made in iteration q(q> 1) of the proposed algorithm 
is satisfied for all index-two (the most common among chemical 
processes) and many higher-index DAE systems of the form 
of Eq. 1 .  It essentially allows us to obtain p - p q  algebraic 
equations involving only the differential variables x ,  in step 1 
of iteration q. Thus, the algebraic equations obtained in step 
2 of iteration q, which serve as the basis for iteration q+ 1 ,  
do not involve any derivatives of the inputs u. This facilitates 
the reconstruction of the algebraic variables z and the subse- 
quent derivation of the state-space realization, independently 
of the feedback law used for the manipulated inputs u. 

For the special classes of DAE systems consid- 
ered in Krishnan and McClamroch (1990), McClamroch (1990), 
and Krishnan and McClamroch (1993) and under the assump- 
tions made therein, the input/output map between the auxiliary 
outputs jj  and the auxiliary inputs z is nonsingular and the 
above algorithmic procedure reduces to an explicit and direct 
reconstruction of z in terms of x and u. 

Remark 2. 

Remark 3. 

State-space realizations of the DAE system 
The derived relation for the algebraic variables z (Eq. 14) 

can be used to obtain a state-space realization of the DAE 
system of Eq. 1 by eliminating the algebraic variables from 
the modeling equations. The resulting state-space realization 
is given the following proposition (see Appendix A for the 
proof). 

Consider the DAE system of Eq. 1 for which 
the proposed algorithmic procedure converges after s itera- 
tions. Then the dynamic system: 

Proposition 2. 

y ,=h ,  ( x ) ,  i =  1 ,  . . . , m 
- 

where x ~ n t =  (xcIR"  : k ; ( x )  = 0; i =  1 ,  . . , , s; j =  1 ,  . . . , 
(p --pJ 1, is a state-space realization of the constrained process. 

Consider the DAE system of Eq. 1 for which 
the proposed algorithmic procedure converges after s itera- 
tions, that is, its index is s+ 1 (see Remark 1). For the DAE 
system comprising of the original differential equations (Eq. 
5) and the new set of algebraic equations obtained after the 
first iteration (Eq. 8), the proposed algorithm converges after 
s- 1 iterations, that is, its index is s. Hence, it is clear that the 
proposed algorithmic procedure reduces the index of the DAE 
system in each iteration through a combination of algebraic 
manipulations and differentiations. This motivates a compar- 
ison of the proposed procedure with existing index reduction 
techniques developed in the framework of numerical simula- 
tion of high-index DAEs. The techniques of Gear and Petzold 
(1984) for linear implicit DAEs, and Gear (1988) for nonlinear 
implicit and semiexplicit DAEs, involve successive differen- 
tiation of all the (underlying) algebraic equations. The pro- 
posed procedure, on the other hand, exploits the specific form 
of Eq. 1 to explicitly identify the smallest subset of algebraic 
equations that need to be differentiated in each iteration. The 
numerical simulation algorithm of Chung and Westerberg 
(1990) for nonlinear implicit DAEs involves differentiation of 
a subset of the equations with a single Jacobian without any 
algebraic manipulations to identify the underlying algebraic 
constraints, thereby introducing higher-order derivatives of the 
original variables. Furthermore, the technique of Bachmann 
et al. (1990) for linear DAEs replaces a set of redundant dif- 
ferential equations with additional algebraic equations in each 
iteration to obtain an equivalent index-one DAE system; the 
proposed method, however, retains the differential equations 
and eliminates the algebraic variables instead, yielding an 
equivalent ODE system (Eq. 16). 

The algebraic constraints of Eq. 15, which are 
specified by the algorithmic procedure, provide an explicit 
means for the choice of consistent initial conditions for the 
differential variables x.  Thus, numerical simulation techniques 
for explicit ODES can be used for the solution of DAEs in the 
form of Eq. 1 ,  on the basis of the state-space realization of 
Eq. 16. 

In view of the fact that the differential variables x are con- 
strained to evolve on the manifold 312, of dimension n - C:=, 
( p  -p,  ), the state-space realization of Eq. 16 is not of minimal 

Remark 4. 

Remark 5.  
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order. Such a reaIization can only be obtained in appropriate 
transformed coordinates. More specifically, given the linearly 
independent scalar fields k; (x) ,  i =  1, . . . , s, j= 1, . . . , 
(p - p , ) ,  one can always find K = n - C:= (p - p ,  ) scalar fields 
qbl(x), . . . qb,(x) to complete a set of n linearly independent 
scalar fields that qualify for a nonlinear coordinate transfor- 
mation. Under such a coordinate transformation: 

r= = T ( x )  = 

the state-space realization of Eq. 16 takes the following form: 

y i = h , ( ~ ) I x = r - ~ c n y  i = l ,  . . . , m 

where 

and gi ( x )  denotes the ith column of matrix S ( x )  . Proposition 
3 that follows gives a reduced-order state-space realization for 
the DAE system of Eq. 1 in these transformed coordinates (see 
Appendix A for a proof of the proposition). 

Consider the DAE system of Eq. 1 for which 
the proposed algorithmic procedure converges after s itera- 
tions. Then the dynamic system: 

Proposition 3. 

where 

is a state-space realization of the constrained process, of di- 
mension (n - Cs= (p - p J ) .  

In the following section, we will formulate and solve an 
output feedback controller synthesis problem for nonlinear 
DAE systems of the form of Eq. 1. 

Feedback Controller Synthesis 
Preliminaries 

For a DAE system of Eq. 1, various system-theoretic issues 
(such as existence and uniqueness of solutions, equilibrium 
points and their stability, zero dynamics and characterization 
of minimum-phase behavior, and so on) can be addressed 
directly on the basis of the equivalent state-space realizations 
(Eq. 16 or Eq. 19) using existing results for ODE systems. 
These state-space realizations can also be the basis for the 
formulation and solution of an output feedback controller 
synthesis problem for DAE systems of the form of Eq. 1. In 
what follows, we will introduce some basic concepts that are 
relevant to analysis and controller synthesis purposes, on the 
basis of the state-space realization of Eq. 16. 

For a DAE system of the form of Eq. 1, we define the 
relative order r, of the outputyi with respect to the manipulated 
input vector u, as the minimum integer such that: 

for xEXC3n, wherexis an open set containing the equilibrium 
point of interest. If no such integer exists, then r, = 03. It will 
be assumed that there is a finite relative order r,  for each output 
yi  to ensure output controllability. Then, the matrix: 

is known as the characteristic matrix (Claude, 1986) for the 
system of Eq. 16. A nonsingular characteristic matrix implies 
a nonsingular input/output map between the manipulated in- 
puts u and the controlled outputs y ,  thereby allowing the use 
of combination of static state feedback laws and state observers 
to enforce a desired closed-loop input/output behavior (Daou- 
tidis and Kravaris, 1994). For simplicity, it will be assumed 
that the characteristic matrix C ( x )  (Eq. 21) is nonsingular on 
X .  Moreover, it will also be assumed that the unforced zero 
dynamics for the system of Eq. 16 (or equivalently Eq. 19) is 
locally asymptotically stable, that is, the DAE system of Eq. 
1 is minimum-phase. 

In the case where the characteristic matrix C ( x )  
(Eq. 21) is singular, an output feedback controller can be 
derived through the combination of a dynamic state feedback 
law with state observers (Daoutidis and Kumar, 1994). 

Remark 6. 
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Problem formulation 
Consider a minimum-phase DAE system of the form of Eq. 

1 with the equivalent state-space realization (Eq. 16) and a 
nonsingular characteristic matrix C ( x ) .  It is desired to derive 
a dynamic output feedback controller that uses the measure- 
ments of the outputs to enforce the following closed-loop ob- 
jectives: 

(1) Induce a closed-loop input/output response of the form: 

where Y = IVl * . . ymlT, ysp= brPl . . . yspmlT are the output and 
set point vectors, and yIJ = [yl  . * . y;ITare vectors of adjustable 
parameters. 

(2) Reject unmeasured disturbances and modeling errors. 
(3) Ensure closed-loop input/output and internal stability, 

subject to the constraints imposed by the algebraic equations. 

Controller synthesis 
The output feedback controller synthesis problem for the 

DAE system of Eq. 1 will be addressed through a combination 
of state feedback with a suitable state observer. Following this 
approach, first, we will address the synthesis of a state feedback 
controller that induces the following input/output behavior: 

where u= [ u I  - . . is a vector of external reference inputs, 
Po= [Ph . . P;]' are vectors of adjustable parameters, and 
provides inputloutput and internal stability in the closed-loop 
system, subject to the underlying constraints of Eq. 15. The 
main result is given in Theorem 1 that follows (for a proof see 
Appendix A). 

Theorem 1. Consider a DAE system of the form of Eq. 1 
with an equivalent state-space realization of the form of Eq. 
16 for which det C ( x )  # 0,  VxEX. Then the static state feedback 
law: 

induces the input/output behavior: 

subject to the underlying constraints imposed by the algebraic 
equations. 

The bounded-input bounded-output (BIBO) stability of the 
closed-loop system can be ensured by a proper choice of the 
adjustable parameters fit. Besides BIBO stability of the closed- 
loop system, it is necessary to ensure the internal stability of 
the closed-loop system, that is, the local asymptotic stability 
of the unforced (u  = O j  closed-loop system. It can be verified 

that the unforced closed-loop system is locally asymptotically 
stable if the following two conditions hold: 

(1) The parameters pf; are chosen properly to ensure BIBO 
stability of the system with the input/output behavior of Eq. 
23. 

(2) The unforced zero dynamics of the process is locally 
asymptotically stable, that is, the process is minimum-phase. 

Given the state feedback controller of Eq. 24 which induces 
the linear input/output behavior of Eq. 23, a linear error 
feedback controller with integral action can then be incor- 
porated around the linear v - y  system to enforce the requested 
closed-loop input/output behavior of Eq. 22 and guarantee 
rejection of disturbances and modeling errors. For example, 
one such error feedback controller realization has the form 
(Daoutidis and Kravaris, 1994): 

where the symbol ( ) i  denotes ith row of a matrix. 
A combination of the static state feedback law of Eq. 24 

with the linear error feedback controller of Eq. 25 provides a 
mixed error and state feedback controller that induces the 
desired closed-loop objectives. A dynamic output feedback 
controller that enforces these closed-loop objectives can then 
be derived by combining the state feedback controller (Eq. 24) 
and the linear error feedback controller (Eq. 25) with an ap- 
propriate state observer. Following the procedure of Daoutidis 
and Kravaris (1994) for stable processes, the equivalent state- 
space realization of Eq. 16 itself can be used as an open-loop 
observer to estimate the states x; while for open-loop unstable 
minimum-phase processes, the stable modes of the zero dy- 
namics can be used instead for the state reconstruction. A 
more detailed exposition along the above lines is omitted for 
brevity. 

Application of the Control Methodology to a Two- 
Phase Reactor 

A broad class of chemical processes modeled by high index 
DAE systems consists of multiphase systems where the indi- 
vidual phases are in thermodynamic equilibrium. Typical ex- 
amples of such systems include distillation columns, multiphase 
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Figure 1. Two-phase reactor. 

reactors, multiphase separation units, and so on. In what fol- 
lows we will consider a vapor-liquid reaction system in a CSTR, 
with the two phases in physical equilibrium. Several fluid-fluid 
reaction systems that fall in the framework of the example can 
be found in Doraiswamy and Sharma (1984). 

Process description 
Consider the two-phase (liquid- and vapor-phase) reactor 

shown in Figure 1. Reactants A and B are fed to the CSTR 
as pure vapor and liquid streams, respectively, at molar flow 
rates F A ,  and FB,, while the two outlet streams from the liquid 
and vapor phases have molar flow rates F L  and Fv, respectively. 
It is assumed that the individual phases are well-mixed and 
they are in physical equilibrium at pressure p and temperature 
T, that is, the chemical reaction is slow compared to the mass 
transfer across the interface. The molar specific heat capacity 
cp, density p ,  and latent heat of vaporization AH" are also 
assumed to be constant and equal for all the species. Reactant 
A diffuses into the liquid phase, where a reaction of the form: 

A + B - C  

takes place. The rate of formation of the product C is given 
by: 

Rc=k, exp(-Ea/RT)CACBVL 

= k, exp( - Ea/R T )  NL pxAxB 

where k, and E, are the pre-exponential factor and activation 
energy, respectively, NL is the liquid-phase molar holdup, C,, 
CB and x,, xB are the molar concentrations and mole fractions 
of the reactants A and B in the liquid phase, and VL is the 
liquid holdup volume, given by: 

N L  vL=- 
P 

Product C then diffuses out into the vapor phase (product 
phase). Reactant B is assumed to be nonvolatile, that is, only 
the reactant A and the product C are present in the vapor 
phase while all the three species are present in the liquid phase. 

The dynamic conservation equations for this process consist 
of the total mole balances in the liquid and vapor phases, the 
mole balance for the species A in the vapor phase, the mole 
balances for species A ,  B in the liquid phase, and the total 
enthalpy balance. The total enthalpy in the two phases is given 
by: 

H=NLHl+NvH, 

where HI, H, are the molar enthalpies in the liquid and vapor 
phases respectively, given by: 

Hl=c,T 

H ,  = HI + AH' 

= c,T+ AHu 

In addition to these differential equations, the model consists 
of algebraic relations whicK include phase-equilibrium rela- 
tions for the species A and C present in both phases, and the 
ideal gas law for the vapor phase. For simplicity, Raoult's law 
is assumed for the phase-equilibrium relations: 

where yA, y c =  (1 -yA) are the mole fractions of A and C in 
the vapor phase, and P>,  P: are the saturation vapor pressures 
for A and C, given by the following Antoine relation: 

PC = exp 30.0 - - ( :::) 
Under the above assumptions, the process description takes 
the form: 
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Table 1. Reactor Parameters and Variables and their Nominal 
Values 

Variable 

c, 
E, 
FA, 

FBo 

FL 

FV 

k, 
NL 
Nv 
Q 
R 
T 

T,, 
TBo 
V ,  
x, 
X, 

ya 
AHR 
AH" 

p 

Description 

Molar heat capacity (Jho1.K) 
Activation energy (kJ/mol) 
Inlet vapor stream molar flow rate 

Inlet liquid stream molar flow rate 

Outlet liquid stream molar flow rate 

Outlet vapor stream molar flow rate 

Preexponential factor (m3/mol. s) 
Liquid-phase molar holdup (kmol) 
Vapor-phase molar holdup (kmol) 
Heat input (kW) 
Universal gas constant ( Jho1 .K)  
Reactor temperature (K) 
Inlet vapor stream temperature (K) 
Inlet liquid stream temperature (K) 
Reactor volume (m') 
Mole fraction of species A in liquid phase 
Mole fraction of species B in liquid phase 
Mole fraction of species A in vapor phase 
Heat of reaction (kJ/mol) 
Latent heat of vaporization (kJ/mol) 
Liquid-phase molar density (kmol/m3) 

(mol/s) 

(mol/s) 

(mol/s) 

(mol/s) 

Nominal 
Value 

80 
I10 

171.25 

300 

375 

50 

1.0e+11 
12.807 
12.839 
100 

8.314 
341.51 

310 
298 
3.0 

0.238 
0.677 
0.716 

50 
20 
15 

In the above equations, NA is the molar rate of transfer of 
reactant A from the vapor of the liquid phase, Nc is the molar 
rate of transfer of product C from the liquid to the vapor 
phase, Q is the heat input to the reactor and VT is the reactor 
volume. A detailed description of the process parameters and 
variables is given in Table 1 along with their nominal steady- 
state values. For this process, it is desired to control the com- 
position of the vapor phase y A  and the temperature T,  using 
the vapor stream outlet flow rate F, and the heat input Q as 
the manipulated inputs. 

Defining the differential variables: 

the algebraic variables: 

the controlled outputs: 

and the manipulated inputs: 

U, = FV, ~2 = Q 

the above process description takes the form of Eq. 1 with: 

f ( x )  = 

r -  r - I  1 1 

1 -(?) - @  
I 1  

1 

k) 
-1  I 1  - 1  

(27) 
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A common approach to avoid modeling this process by a 
high-index DAE system is to assume negligible vapor holdup 
compared to the liquid holdup, thus eliminating the need to 
model the vapor dynamics. The modeling equations under this 
simplifying assumption consist solely of differential equations 
obtained from the total mole balance, the mole balances for 
species A ,  B ,  and the total enthalpy balance where the total 

E‘ ( x )  = 

Based on this simplifying assumption, the following ODE 
model can be easily derived: 

0 0  1 

1 0  -~ 
( V Z X )  

- - 

RC 

Thus, identifying two constraints: 
- FvA€i” + R,( cPT- A H R )  + Q) (28) 

wherey, can be directly eliminated from the above ODE model 
using the following equilibrium relation: 

Clearly, the accuracy of this model depends on the validity 
of the assumption that the vapor holdup N v  is negligible com- 
pared to the liquid holdup NL. This assumption will not hold 
at high pressures when the vapor holdup becomes comparable 
to the liquid holdup. In the final section, the performance of 
the nonlinear output feedback controller based on the DAE 
model (Eq. 26) will be compared with that of a nonlinear output 
feedback controller based on the simplified ODE model (Eq. 
28) to demonstrate the superiority of the former over the latter. 

The next section discusses the derivation of the equivalent 
state-space realization for the DAE model (Eq. 26) following 
the proposed algorithmic procedure and the resulting output 
feedback controller. 

State-space realization 
Iteration 1. Consider the original algebraic equations: 

O = k ( x )  + I ( x ) z  

where k ( x ) ,  I ( x )  are given in Eq. 27 and 

rank I ( x )  = p l  = 1 

among the differential variables x .  

once, to obtain the following set of algebraic equations: 
Step 2. The last 2 equations of Eq. 29 were differentiated 

L 

A detailed description of the individual terms in Eq. 31 is 
included in Appendix B and is omitted here for the sake of 
brevity. 
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Step 3. The rank of the matrix: 
7 

L 

was evaluated to bep, = 3 =p. Thus, the algorithmic procedure 
converged after s= 1 iteration implying that the DAE system 
of Eq. 26 has index vd = 2. 

From Eq. 31, it follows that the algebraic variables z1 =NA,  
z2 = Nc are given by: 

where: 

Substitution of Eq. 32 into the differential equations of the 
DAE system (Eq. 26) gives the corresponding state-space re- 
alization in the form of Eq. 16: 

dt det(i2) 

dx6 -= 
dt 

where x€nt= (x61R6:k^f(x) =0, k^:(x) =0)  (k^t(x) ,  k^i(x) are 
given in Eq. 30) and ti (x) , i = 1 ,  . . . ,8 are nonlinear functions 
of the differential variables x whose specific forms are included 
in Appendix B. 

Controller synthesis 
Referring to the model of Eq. 33, it is straightforward to 

verify that the relative orders of the controlled outputs y ,  =x2, 
y2  =x6 with respect to the manipulated input vector u = [ul  u2IT 
are as follows: 

r1=1;  r 2 = l  (34) 

and the characteristic matrix: 

is nonsingular. Thus, a closed-loop inputloutput decoupled 
response of the following form was requested: 

dY1 
Yl + rfl =Y*pl 

(35) 
2 dY2 

Y2 + 7 2 1  dt = y s p 2  

According to Theorem 1, the static state feedback controller: 

(36) 
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Figure 2. Closed-loop profiles of controlled outputs and 
manipulated inputs for a 15% decrease in the 
set point for mole fraction of species A in va- 
por phase. 

induces the following linear input/output behavior: 

between the inputs u= [u, u2IT and the outputs y. 
The output feedback controller that induces the requested 

response of Eq. 35 subject to integral action, was derived by 
combining the state feedback controller of Eq. 36 with a linear 

65 70i 

8 3% 

j w I C l I l  3 0  0 0 80 UmS(rm0l I20 I W  200 

3451 343 

Figure 4. Closed-loop profiles of controlled outputs and 
manipulated inputs under a 5% increase in the 
inlet flow rate FA,. 

error feedback controller of the form of Eq. 25 and a state 
observer. Following the approach of Daoutidis and Kravaris 
(1994), the process model (Eq. 33) was used for the purpose 
of state observation, given the open-loop stability of the proc- 
ess at the nominal equilibrium point (see Table 1). The con- 
troller was tuned by choosing the following set of parameters: 

Of0 = 1 .O, Pi ,  = 800 s 

Figure 5. Closed-loop profiles of controlled outputs and 
Figure 3. Closed-loop profiles of controlled outputs and 

manipulated inputs for a 2.5% increase in the 
set point for temperature. 

manipulated-inputs for a 15% decrease in the 
set point for mole fraction of species A in va- 
por phase under initialization error. 
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Figure 6. Closed-loop profiles of controlled outputs and 
manipulated inputs for a 2.5% increase in the 
set point for temperature under initialization 
error. 

Discussion of controller performance 
The set point tracking and disturbance rejection capabilities 

of the controller were evaluated through simulations. 
The first two simulation runs addressed the set point tracking 

capabilities of the controller. In the first run, the process, which 
initially was at its nominal steady state, was subjected to a 
15% decrease in yspl,  or equivalently, an increase in the desired 
mole fraction of the product C in the vapor phase, at time 
t = 5 min. The corresponding closed-loop profiles are shown 
in Figure 2. Clearly, the controller enforced the requested first- 

339 
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331 :liH 335 o 40 80 Ume(rmn) im 160 zm 

1 
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n. 35 i p . ~  30 o UI 8 0 i m i ~ m  

Figure 7. Closed-loop profiles of controlled outputs and 
manipulated inputs for a 15% decrease in the 
set point for mole fraction of species A in va- 
por phase under parametric uncertainties. 
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Figure 8. Closed-loop profiles of controlled outputs and 
manipulated inputs for a 2.5% increase in the 
set point for temperature under parametric un- 
certainties. 

order response fory,, while maintainingy, at its nominal value. 
In the second run, the process was subjected to a 2.5% 

increase in ysp2, that is, an increase in the desired reactor tem- 
perature T, at time t = 5 min. Again, the controller induced 
the requested first-order response for y, ,  while maintaining yl 
at its nominal value. The output and manipulated input profiles 
are shown in Figure 3. 

The third run addressed the disturbance rejection capabilities 
of the controller. The process at its nominal st.eady state was 
subjected to an unmeasured 5% increase in the vapor stream 
inlet flow rate FA, at time t = 5 min. It can be seen from the 

o a 80 im 160 200 
ume (mull me lmull 

I 

Figure 9. Comparison of closed-loop profiles of outputs 
and inputs for a 15% decrease in the set point 
for mole fraction of A in vapor phase under 
DAE- and ODE-based controllers. 
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Figure 10. Comparison of closed-loop profiles of out- 
puts and inputs for a 2.5% increase in the 
set point for temperature under DAE- and 
ODE-based controllers. 

closed-loop profiles in Figure 4 that the two outputs return 
smoothly to their respective set points, after initial deviations. 

In the next two runs, the set point tracking capability of the 
controller in the presence of initialization errors was studied. 
The observer state corresponding to the liquid holdup NL was 
subjected to a 5% initialization error, and a 15% decrease in 
ySpl was imposed at time t = 5 min. Figure 5 includes the cor- 
responding closed-loop profiles. Figure 6 shows the closed- 
loop profiles when a 2.5% increase in ySp2 was imposed at t = 5 
min, under the same initialization error. As expected, the pro- 
files depict a slight initial deterioration of the controller per- 
formance with the overall performance being very satisfactory. 

The performance of the controller under modeling errors 
was also studied. Figure 7 shows the closed-loop profiles when 
a 15% decrease in ySpl was imposed at t = 5  min under 5% 
errors in the values of molar heat capacity c,, and molar density 
p in the liquid phase. Figure 8 shows the closed-loop profiles 
for the same parametric uncertainties, when a 2.5% increase 
in yfpz was imposed at t = 5 min. Despite these parametric un- 
certainties, the controller provided very good closed-loop re- 
sponses. 

The subsequent runs compare the performance of the non- 
linear output feedback controller based on the DAE model 
(Eq. 26) with that of a nonlinear output feedback controller 
based on the simplified ODE model of Eq. 28. Figure 9 shows 
the respective plots for the two controllers when the process 
was subjected to a 15% decrease in ySpl at time t= 5 min. The 
ODE-based controller provides a good response for y,, but it 
does not provide the decoupled response as requested. In Figure 
10, the closed-loop profiles for both controllers are shown for 
a 2.5% increase in ySp2. Clearly, the performance of the ODE- 
based controller has deteriorated significantly compared to the 
DAE-based controller. While, the DAE-based controller pro- 
vides the smooth, decoupled responses as requested, the closed- 
loop output profiles for the ODE-based controller show sig- 
nificant deviations in yI and oscillations in y,, thus demon- 
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strating the superiority of the DAE-based controller over the 
ODE-based one. 

Conclusions 
In this article, we presented a systematic feedback controller 

synthesis framework for a broad class of nonlinear MIMO 
DAE systems in semiexplicit form. The coupled differential 
and algebraic equations in such systems do not constitute a 
standard state-space description, suitable for analysis and con- 
troller synthesis. For this reason, an algorithmic procedure was 
initially developed for the derivation of equivalent state-space 
realizations for such systems. The procedure entails the re- 
construction of the algebraic variables and the specification 
of algebraic constraints among the differential variables irn- 
posed by the algebraic equations. An output feedback control 
methodology that achieves desired closed-loop characteristics 
was then developed, through combination of state feedback 
and state observers. The developed control methodology was 
applied to a two-phase reactor modeled by an index-two DAE 
system with excellent servo and regulatory performance. 
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Notation 
b, g, I = 

m =  
3 1 2 -  

n =  
P =  
p. = 

Y ,  = 
s =  

matrices in the DAE model 
p x p  nonsingular matrices 
vector fields in the DAE model 
vector field in state-space realization of dimension n 
matrix in state-space realization of dimension n 
vector fields in the algorithm 
matrices in the algorithm 
scalar fields in the DAE model 
number of manipulated inputs and controlled outputs 
constrained manifold where differential variables 
evolve 
number of differential variables 
number of algebraic variables 
ranks of matrices in the algorithm 
number of iterations for convergence of algorithm 
vector of output set points 

Greek letters 
P,,, y,, = vectors of adjustable parameters 

= vector of state variables in transformed coordinates 
( = vector of states of linear error feedback controller 
Cp, = scalar fields for coordinate transformation 

Math symbols 
R = real line 
R' = i-dimensional Euclidean space 
T = transpose 

Lfk = Lie derivative of a scalar field k with respect to vector 
field f 
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Appendix A 
Proof of proposition I 

Consider a DAE system (Eq. 1) for which the algorithm 
converges after s iterations, that is, p S i l = p .  The aim is to 
prove that the F=, ( p - p i )  scalar fields kj(x),  i=  1, . . . , s; 
j =  1, . . . , ( p - p i )  are linearly independent. The scalar fields 
kj(x) are said to be linearly independent if the corresponding 
gradient vector fields: 

are linearly independent (Kravaris and Kantor, 1990a). Simi- 
larly, a scalar field &(x) will be said to be linearly dependent 
on scalar fields hl(x),  . . . , h,(x) if the vector field & ( x )  is 
linearly dependent on the vector fields dxI ( x ) ,  . . . , A , ( x ) .  

A proof will be given following an inductive procedure sim- 
ilar to that of Silverman (1969). The key idea of the proof is 
to show that if, for any iteration q, a scalar field @ ( x )  is 
linearly dependent on the scalar fields fi ( x ) ,  . . . , &A-,,,(x), 
. . . , k f ( x ) ,  . . , , k % , ( x ) ,  k$+, ( x ) ,  . . . , &;-pq(x) ,  then: 

(0 P ~ + ~ < P ;  and 
(ii) There exists a scalar field k $ + ’ ( x )  in iteration q+ 1, 

which is linearly dependent on the scalar fields k t ( x ) ,  . . . , 

kz?;q+l ( x )  , thereby implying by induction that ps+ <p, which 
clearly is a contradiction. 

Let iteration q be the first iteration when a scalar field 
& ( x ) € ( k f ( x ) ,  . . . , kpQ-pq(x))  is linearly dependent on the 
remaining scalar fields in the set: 

l ; - , , , ( X ) ,  . . . , Lf+l(X), . . . , k$:; ( x ) ,  k$:; ( x ) ,  . . . , 
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Define the following two disjoint subsets of scalar fields: 

&"'( x )  = ( /t; ( x )  E &q( x )  :dkj ( x )  b ( x )  

is a row of the matrix LQ(x )  ) is obtained. Also, by definition, the p4+,  x p  matrix L 4 ( x )  has 
full row rank, which implies that there exists a matrix: W ' ( X )  = I /tj ( x )  E 5 t q  ( x )  :dL; ( x )  b ( x )  

Lqt ( x )  = LQT( x )  [Lq(x)Lq'( x ) ]  - I 
is a linear combination of the rows of L q ( x )  ) 

such that L4(x)Lqt(x)=Ip,+l. Thus, from Eq. 39 it follows where: 

that: 

R2 ( x)SI ( X )  = R2 ( x ) ~ R ~ ~ ~ ' ( x )  b ( x)Lq'( X )  

Substituting the above relations for R2(x)Sl ( x )  in Eq. 41 the - 
following relation is obtained: 

R;+l(x) = R ~ ( x ) & ~ J ' ( x )  
Furthermore, define the vector fields Z?'(x), PQ"'(x) com- 
prising of the scalar fields in the sets fCq*'(x), and &qv"(x), 
respectively, such that: 

Then, owing to the linear dependence of the scalar field @(x) 
on the scalar fields in the set gq(x), there exist row vectors 
R,(x )  and R2(x)  such that: 

d@ ( X )  = R1 (x)dP* ' (  X )  + R2 (x )dP*" (x )  (38) 

Moreover, by the definition of the two subsets &qr'(x), &q*"(x) 
and the assumption on the rank of the augmented matrix in 
the algorithm, there exists a matrix S1 ( x )  such that: 

= SI ( X ) L 4 ( X )  

Furthermore, consider the matrix: 

with its rows linearly dependent on the rows of Lq(x ) ,  by the 
definition of the set gq(x). Then, there exists a matrix -yq(x) 
such that: 

0 Clearly, 
dPJ' (x)g(x)  =S,(x) [ ] (39) d f i J ( x ) g ( x )  

y ( X )  = dP"(X)  b ( x )  Lq' ( x )  

From Eq. 38 and Eq. 39, it follows that: 

r?+ I ( x )  = d@ (x )b  ( x )  = RI (x)dkq*'(x)b ( X )  

Thus, the rows of dkq*"(x)b(x) (and correspondingly the rows 
of dLqsN(x)g(x)) can be reduced to zero through row oper- 
ations in step 1 of iteration q+ 1, yielding the remaining 
p -pq+ I - 1 algebraic constraints (besides the constraint in Eq. 
41): 

+ R,(x)S, (x)Lq(x) (40) 

proving that the row vector ry+l(x) is linearly dependent on 
the rows of the matrix L 4 ( x ) ,  that is, ~ ~ + ~ < p .  

The relation in Eq. 40 implies that in step 1 of iteration 
q+ 1, the row vector T;+'(x) and the row vector 
E;+ ' (x)=d@(x)g(x)  can be reduced to zero through ele- 
mentary row operations. Under the requisite row operation, 
the corresponding algebraic constraint: 

o= 

: I  
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From the relations in Eq. 42 and Eq. 43 
of Z?43'1(x) it follows that: 

and the definition 

X )  (44) 

where 014+'(x) = [crf+ ' (x)  ~ y : + ' ( x ) ] ~  such that: 

a?+ '(X)E@+ ' (x)  

and & ( x )  is the ith component of the row vector R 2 ( x ) .  
Claim. The gradient vectors dRz, i (x)  are linearly depen- 

dent on the row vectors of dEq+Lsl (x)  and dx4+I>I1(x) .  
If the above claim is true, then it is straightforward to verify 

that the gradient vector d E ? + ' ( x )  is linearly dependent on the 
row vectors of dZ?4+1q1(x), dKq+l , l l (x) ,  that is, the scalar field 
& + ' ( x )  is linearly dependent on the scalar fields in the set 
g C 4 + I ( x ) .  Thus, the whole argument can be repeated for it- 
eration (q+ 1) implying thatp,+,<p. By induction, it can then 
be shown that p,+ <p. leading to a contradiction. 

Proof of Claim. Consider the relation in Eq. 38. Without 
loss of generality, it is assumed that the scalar fields in the sets 
%?.'(x) and &q."(x) are linearly independent. If there are some 
scalar fields in the set k q 3 " ( x )  that are linearly dependent on 
the others, then the corresponding component of R, (x )  will 
be identically equal to zero. Let p = pl + pz, where p, ,  p2 denote 
the number of scalar fields in the sets gC4* ' (x )  and g q > " ( x ) ,  
respectively. Then it is always possible to find n - p scalar fields 
$I ( x ) ,  . ~. , $ n - r ( ~ )  which together with the scalar fields in 
the sets X q 9 ' ( x )  and g q V " ( x )  comprise a set of n linearly in- 
dependent scalar fields, thus, qualifying for a nonlinear co- 
ordinate transformation. Consider such a coordinate 
transformation: 

i-= 

In the new coordinates (, the row vectors dKF1(<) take the form 
[0 . . . 0 1 0 . . . 01 with the nonzero entry 1 in the ith position, 
while the row vectors dZ?pl'({) take the form [0 . . - 0 1 0 . . 
01 with the nonzero entry 1 in the (pl + i)th position. Clearly, 
the row vector d@({) must have the form [ * - . * 0 * * . 01, 
that is, only the first p entries can be nonzero (denoted by *). 
Thus,itfollowsthat(aRzJ{{)/a<,)=O,j= 1 , .  . . , p 2 ; l = ( p +  l),  
. . . , n which implies that the gradient vectors dR,Xr) must 
be linearly dependent on the row vectors of dZP'(r) and 
dZ?911({), completing the proof of the claim. 

Proof of proposition 2 
The algebraic constraints of Eq. 13 identified by the pro- 

posed algorithmic procedure directly imply that the algebraic 
variables z vary according to the relation of Eq. 14. It is then 
straightforward to show that for a set of initial conditions x(0) 
such that ki(x(O))=O; i= 1 ,  . . . , s; j =  1 ,  . . . , (p-p,) ,  and 
z satisfying Eq. 14, the algebraic constraints of Eq. 15 and 
Eq. 6 are satisfied and the differential variables x evolve on 
nt. A direct substitution of Eq. 14 in the differential equations 
of Eq. 5 yields the state-space realization of the constrained 
system given by Eq. 16, completing the proof of the propo- 
sition. 

Proof of proposition 3 
Consider the state-scape realization of Eq. 18 of the con- 

strained process where, x ( t ) ~ % ,  that is, L$(x( t ) )  = O ;  i= 1 ,  
. . . , s; j =  1 ,  . . . , (p-pi). In the transformed coordinates 
{, the condition x ( t ) E n t  implies that the variables {j'); i =  1 
. .  + ,  s; j =  1, . . . , (p-p,) are identically zero, which directly 
leads to the state-space realization of Eq. 19. 

Proof of theorem I 
Consider the DAE system of Eq. 1 which, under the control 

law of Eq. 24, yields the following closed-loop DAE system: 

O = k ( x )  + I ( x ) z  

y ,=h, (x ) ;  i = l ,  . . . , m (45) 

A state-space realization for the closed-loop DAE system of 
Eq. 45 can be obtained following the algorithmic procedure 
proposed earlier. It is straightforward to show that the algo- 
rithmic procedure converges after exactly s iterations, identi- 
fying the same algebraic constraints among x (Eq. 15) and 
yielding the following relation for z: 

Thus, the state-space realization of the closed-loop dynamics 
takes the form: 

y i = h i ( x ) ;  i = l ,  . . . , m (47) 
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where xC3n andT(x), g(x) are defined in Eq. 16. Calculating 
the expressions for the derivatives of the outputs, that is, dJy,/ 
dtJ,  i = l ,  . . . , m; j =  1 ,  . . . , r,, on the basis of Eq. 41 and 
substituting in Eq. 23, it is then straightforward to show that 
the input/output behavior of Eq. 23 is indeed enforced. 

Appendix B 
This section includes a detailed description of the terms 

involved in the state-space representation of the DAE system 
of Eq. 26 and the resulting feedback controller: 

p2 - 

YI p2 -_  
CP 

11  - PIX2 

12 - 

= P d 1  -x2> 

7 2  pi2 = - 
CP 

where 
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